165665

FINAL

SAUGET AREA 2, SAUGET, IL

RI/FS SUPPORT SAMPLING PLAN VOL. 6 DATA VALIDATION PLAN

Prepared for

Sauget Area 2 Sites Group c/o Steven Smith 6S Solutia Inc 575 Maryville Centre Drive St. Louis, Missouri 63141

Submitted by:

URS Corporation 2318 Millpark Drive Maryland Heights, MO 63043 (314) 429-0100 Fax (314) 429-0462

May 25, 2001 Project No. 23-20010024.02

Revision No.: 1 Date: 05/25/01

TABLE OF CONTENTS

SECTION 1	INTRO	DUCTION	1-1
SECTION 2	BACK	2-1	
SECTION 3	PROJE	CT ORGANIZATION	3-1
		SA2SGURS Project ManagerData Validation Task Manager	3-1
SECTION 4	TASKS	4-1	
		Coordination with SA2SG Distribution PE Samples Finalize Project-Specific Data Validation Checklists Data Validation	4-1 4-1
SECITON 5	REPOR	5-1	
	5.1 5.2	PE Sample Assessment Report Data Validation Report	5-1 5-1
SECTION 6	SCHED	DULE	6-1
SECTION 7	REFER	RENCES	7- 1

List of Appendices

Appendix A	Data Validation Worksheets
Appendix B	Example Data Validation Report

Revision No.: 1 Date: 05/25/01

SECTIONONE

Introduction

In response to the requirements of an Administrative Order on Consent (AOC) the Sauget Area 2 Sites Group (SA2SG) will perform a Remedial Investigation/Feasibility Study (RI/FS) at Sauget Area 2 Sites O, P, Q, R, and S. The Support Sampling Plan (SSP) for this effort calls for the analytical results from that effort to be independently validated by a third party. Further, the technical performance of the subcontracted laboratory is to be evaluated through submission and analysis of performance evaluation (PE) samples. The results of the validation effort and an evaluation of results from the PE sample will be used to assess the fitness for use of the data generated during the RI/FS.

This work plan describes the tasks and methods of work that will be employed by URS during the data verification and validation and performance evaluation efforts. Section 2.0 of this plan presents background information pertinent to the work. Project organization and management is discussed in section 3.0. Section 4.0 presents a time-sequenced list of tasks associated with the work and the methods of work that will be employed in executing those tasks. Section 5.0 addresses the form and content of work products stemming from the work and section 6.0 presents a schedule for accomplishing the work. References are provided in section 7.0.

Revision No.: 1 Date: 05/25/01

SECTIONTWO

Background and Scope of Work

A complete discussion of the background of this project and scope of work is presented in Volume 1, Site Sampling Plan, of the RI/FS Support Sampling Plan.

The collected samples may be analyzed for one or more of the following:

- Volatile organic compounds
- Semi-volatile organic compounds
- Pesticides
- Herbicides
- PCBs
- Metals
- Dioxins.

In order to ensure the quality and usability of the data derived from those analyses, the SA2SG has established a quality assurance/quality control (QA/QC) program that includes systematic, independent reviews of the analytical laboratory's work products. Two methods of assessment have been identified as a part of that QA/QC program: (1) verification and validation of the analytical data, and, (2) the submission and evaluation of PE samples.

Data validation may be defined as an organized approach to the assessment of analytical data in relation to pre-established performance goals and program objectives. The performance goals are defined in the quality assurance project plan (QAPP) for the work. Program objectives, in this case, are broadly defined as characterizing the nature and extent of environmental contamination, assessing any human health or environmental risks that may be associated with any such contamination, and demonstrating that remedial activities have been effective in removing or isolating any such contamination.

In accordance with US Environmental Protection Agency (USEPA) guidance, the nature of these program objectives is such that data of know quality (definitive type data) are required. Data validation will be employed to define the precision, accuracy and representativeness of the data generated and to define the bounds within which the data may be reliably employed.

A PE sample is a well characterized, neutral media into which known amounts of chemical of interest have been added (spiked). Based on statistical assessment of repetitive analysis of the PE sample, tolerance limits are established that defined the normal range of variability to be

Revision No.: 1 Date: 05/25/01

SECTIONTWO

Background and Scope of Work

expected in the reported analytical results for that PE sample under a wide variety of analytical conditions. Thus, the results reported by any given laboratory for that PE sample may be compared to the statistical limits previously derived providing an assessment of the laboratory's ability to provide accurate data.

PE samples are often submitted as part of regulatory certification programs. In these cases the PE samples is generally submitted "in the open" (i.e., the laboratory is aware that the sample is a PE sample) but without providing the laboratory with the true values or certified acceptance limits until after the analysis is complete. This type of PE sample is called "single-blind". A more complete assessment of the laboratory's analytical and services systems can be accomplished through the use of a "double-blind" PE sample. In this case the laboratory is unaware that the sample submitted is a PE sample and is not told of the results of the testing until it is completed. For purposes of this program, double-blind PE samples will be employed.

Date:

Date: 05/25/01

Revision No.: 1

SECTIONTHREE

Project Organization

The responsibilities of the various parties, only those and only as relates to this scope of work, are described below.

3.1 SA2SG

The SA2SG is responsible for contracting with a qualified analytical laboratory for analysis of field and field QC samples and for clearly defining the analytical scope of work, quality control, and deliverable requirements to the laboratory. The SA2SG approves planning documents that contain the specifications for the work, in particular the QAPP, that contains the detailed specifications against which the data will be validated.

The SA2SG develop the sampling and analysis schedule and will work with URS to identify those groups of samples that will be included in the data validation audit. The SA2SG will cause finished data packages for those groups of samples to be forwarded to URS and will serve as a facilitator between URS and the laboratory during the data validation process.

The principle point of contact for the SA2SG is Steve Smith. He may be contacted at:

Solutia Inc.

575 Maryville Centre Drive St. Louis, MO 63141

Phone: 314/674-4660 Fax: 314/674-8957

3.2 URS PROJECT MANAGER

The URS Project Manager is Robert Veenstra. He may be contacted at:

URS Corporation 2318 Millpark Drive Maryland Heights, MO 63043

Phone: 314/429-0100 Fax: 314/429-0461

He is responsible for day to day direction of the work performed by URS personnel. He establishes budgets and schedules and monitors performance to same. He makes work assignments to appropriate Task Managers and reviews work products for accuracy and completeness. He coordinates URS's activities with other parties involved in the work and communicates as needed any changes or challenges to the scope of work

Revision No.: 1 Date: 05/25/01

SECTIONTHREE

Project Organization

3.3 DATA VALIDATION TASK MANAGER

Mr. John Kearns will serve as the URS Data Validation Task Manager. Mr. Kearns may be contacted at:

URS Corporation 849 International Drive, Suite 320 Linthicum, MD 21090 Phone: 410-859-5049

Fax: 410-859-5202

Mr. Kearns is responsible for carrying out the PE study and for conducting the independent data validation. He will cause project-specific data validation checklists to be developed and the data to be reviewed by the data validation staff according to those protocols. He will review and approve individual data validation reports and the final data validation project deliverable. He will cause PE samples to be forwarded to the analytical laboratory, evaluate the results and report on same in accord with the provision of section 4.0.

Revision No.: 1 Date: 05/25/01

SECTION FOUR

Tasks and Methods of Work

4.1 **COORDINATION WITH SA2SG**

The URS Project Manager and Data Validation Task Leader will initiate a conference call with the SA2SG for purposes of coordinating schedules and identifying the groups of samples to be included in the data validation audit.

DISTRIBUTE PE SAMPLES 4.2

URS will acquire double blind PE samples from Environmental Resource Associates (ERA). PE samples will be submitted to the laboratory from a remote URS office location under an assumed project name. The Data Validation Task Leader will request a bottle shipment from the laboratory, pack the PE samples for return shipment and submit the samples, properly preserved and under chain of custody, with a trip blank included. Samples will be submitted on two separate days.

Upon receipt of the data package, URS will validate the data package (see section 4.4) and assess the analytical results in relation to the certified values provided by ERA. A report of findings will be generated (see section 5.0) and three copies will be forwarded to the URS Project Manager for subsequent transmission to the SA2SG. At the request of the SA2SG a copy of the report will also be forwarded to the laboratory with a request that they investigate and address any deficiencies noted in the report. URS will follow-up with the laboratory until such time as a response is received, evaluate the response and provide commentary to the URS Project Manager for subsequent transmission to the SA2SG.

4.3 FINALIZE PROJECT-SPECIFIC DATA VALIDATION CHECKLISTS

Appendix A contains data validation checklists based on the USEPA National Functional Guidelines, modified for the RCRA methods of analysis anticipated to be used during this work. Both Level III and Level IV validation are to be performed. A Level III validation is defined as a review of the data for all of the elements of validation contained in the USEPA National Functional Guidelines (NFGs) for Organic (and Inorganic) Data Review, however, only summary form information is assessed. There is no attempt to verify calculations and only cursory assessment of compound identification criteria and quantitative statements.

A Level IV review includes all the elements of the Level II review but also entails a detailed review for raw data and confirmation of calculations performed by the laboratory.

SECTION FOUR

Tasks and Methods of Work

Revision No.: 1

Date: 05/25/01

The specifications of the NFGs are modified such that the specifications of the analytical method and project-specific QAPP take precedence over the specifications of the NFGs to the extent that those specifications differ.

To the extent necessary, URS will modify the checklists presented in Appendix A to incorporate specific quality control (QC) acceptance criteria from the QAPP. Those finalized checklists will be employed in the data validation process discussed below.

4.4 DATA VALIDATION

The SA2SG will cause the data packages containing the groups of sample results agreed upon in section 4.1 to be forwarded to the URS Data Validation Task Manager. Upon receipt, a staff chemist will log in the data packages noting the audit samples contained in each and performing a cursory completeness check on the deliverables. Any discrepancies will be referred to the SA2SG for resolution prior to initiating validation activities.

Upon acceptance, the data package will be referred to one of the staff chemists for review. The chemist will verify the contents of the data packages against the requirements summarized in the appropriate data validation checklist(s) for the method(s) of analysis involved. Any deviations from the requirements are noted on the validation checklists and supporting documentation pertaining to any such deviation is copied for subsequent inclusion in the validation records (see section 5.0). Following the instructions in the data validation checklists, the staff chemist applies data qualifying flags to the analytical result report forms.

When the review is completed the staff chemist will draft a summary report for the data package, cover the draft report with a Quality Control Checklist and forward the completed draft to a project chemist for peer review.

The project chemist will perform a two sided audit of the work produced by the staff chemist working first from his/her independent observations to the draft data validation report and flagged data report forms, and, in reverse from the draft data validation report and flagged report forms to the data package. Any questions or concerns raised by the project chemist are documented in the report and on the Quality Control Checklist. Those issues will be resolved between the staff and project chemists and a draft final report is forwarded to the Data Validation Task Manager for review and approval.

Revision No.: 1 Date: 05/25/01

SECTION FOUR

Tasks and Methods of Work

The Data Validation Task Manager reviews the report for any indications of inconsistent application of logic, challenges any instances of rejected data to ensure that the maximum amount of useful information is retained, and verifies the correctness and completeness of the deliverable. When all individual data validation reports are completed the Data Validation Task Manager drafts the project summary section of the final deliverable. Copies of the finished deliverable will be forwarded to the URS Project Manager for subsequent transmission to the SA2SG.

SECTIONFIVE

Reporting and Deliverables

Revision No.: 1

Date: 05/25/01

5.1 PE SAMPLE ASSESSMENT REPORT

The PE sample assessment report will consist of a brief narrative description of the study methods; a data validation report (see section 5.2); a tabular presentation of the results of the laboratory analysis to the certified ranges; and, summary recommendations.

5.2 DATA VALIDATION REPORT

The data validation report will consist of a brief narrative description of the methods of work employed; a project summary organized around data quality indicators (i.e., precision, accuracy, comparability, sensitivity) representativness, completeness, and with summary recommendations; and, appendices containing individual data validation reports for the data reports reviewed. An example of an individual data validation report is contained in Appendix B.

Revision No.: 1 Date: 05/25/01

SECTIONSIX

Schedule

A complete project schedule is presented in Section 15 of the Volume 1, Site Sampling Plan.

Revision No.: 1 Date: 05/25/01

SECTIONSEVEN

References

USEPA, 1994a. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA-540/R-94/012, US Environmental Protection Agency, February, 1994.

USEPA, 1994b. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA-540/R-94/013, US Environmental Protection Agency, February, 1994.

USEPA, 1999. SW-846, Test Methods for Evaluating Solid Wastes, 3rd Ed, 3rd Update, US Environmental Protection Agency, July, 1999.

Revision No.: 1 Date: 05/25/01

APPENDIXA

Data Validation Worksheets

DATA VALIDATION WORKSHEET VOLATILE ORGANIC ANALYSIS - NFGs modified for RCRA

Reviewer:	rroject Name:Project Number:						
Date:							
Lab:				SDG No.:			
							
1.0 Chain of	Custody/Sample Co	ondition					
					Yes	NO	NA
1.1	Do Chain-of-Custody	y forms list all samples	analyzed?	· ·			
1.2	Are all Chain-of-Cus	stody forms signed, indi	cating sample chain-of-	custody was maintained?			
1.3				any problems with sample receipt,		13	
	1			iffecting the quality of the data?			
Note:	<u></u>						
Note.							
							
2.0 Holding	Time/ Preservation				Yes	NO	NA
2.1	Do cample preservat	ion, collection and stor	age condition meet met	and requirement?			
2.1		According to the Control of the Cont		L			
	-		=	laboratory and the temperature of the may flag positive results with a "J"			
	and non-detects "UJ"	•	augement the reviewer	may mag positive results with a 3			
2.2	L		ed from sampling to date	e of analysis, been exceeded? If yes,	 		<u> </u>
2.2	J(+)/UJ(-).	iolding times, determine	a nom sampling to date	or analysis, occir exceeded. If yes,	1		
	Matrix	Preserved	Aromatic	All others	1		L
	Aqueous	No	7 days	14 days			
	riquodis	Yes	14 days	14 days			
	Soil/Sediment	$4^{\circ}C \pm 2^{\circ}C$	14 days	14 days			
· · · · · · · · · · · · · · · · · · ·	501/ Scannent	1 0 - 2 0	1 v days	1 · days	1		
	D		C	1 h - 1 1 h			
	For method 5035 pi	• '	•	and holding time requirements of the			
2 2			published method.		+		I
2.3	Triave any technical r	iolaing times been gros	siy (twice the holding ti	me) exceeded? If yes, $J(+)/R(-)$.			L
Note:							

3.0 GC/MS Instrument Performance Check

		Yes	No	N/
3.1	Are GC/MS Tuning and Mass Calibration forms present for bromofluorobenzene (BFB)?			
	Have all samples been analyzed within twelve hours of the BFB tune? If no, applying professional			
3.2	judgement, the reviewer may flag R.			
3.3	Have ion abundance criteria for BFB been met for each instrument used? If no, flag R.			
Note:				
Blanks	(Method Blanks, Field Blanks and Trip Blanks)	Yes	No	N.
4.1	Is a Mathed Blank Summary form prevent for each hatch?	res	NO	
4.1	Is a Method Blank Summary form present for each batch? Do any method blanks have positive VOA results (TCL and/or TIC)?	Same of the contract of the co		
	<u></u>			
4.3	Do any field/trip rinse/equipment blanks have positive VOA results (TCL and/or TIC)?	s. see the pr		
4.4	Are there field/trip/rinse/equipment blanks associated with every sample?	i a.	<u> </u>	L
	Action: Positive sample results <5X (or 10X for common volatile lab contaminants- methylene chloride, acetone, and 2-butanone) the highest concentration of any blank should be qualified "U" and the result			
	elevated to the RL for estimate concentrations.			
4.5	If Level IV, review raw data and verify all detections for blanks were reported.	 	·· <u>···</u>	
Note:	The Level IV, Teview law data and verify an detections for blanks were reported.	<u> </u>		
Note.				
		· · · · · · · · · · · · · · · · · · ·		
GC/MS	S Initial Calibration	Yes	No	N
5.1	Are Initial Calibration summary forms present and complete for each instrument used?			
5.2	Are calibrations linear applying either %RSD <15% or r >0.990?	****		
				L
	III not, $J(+)/UJ(-)$. In extreme cases, the reviewer may flag non-detect "R".			
5.3	If not, $J(+)/UJ(-)$. In extreme cases, the reviewer may flag non-detect "R". Do any compounds have an RRF < 0.05 (use 0.1 for poor responders like acetone and 2-butanone)? If			
5.3	Do any compounds have an RRF \leq 0.05 (use 0.1 for poor responders like acetone and 2-butanone)? If			
5.3				
	Do any compounds have an RRF < 0.05 (use 0.1 for poor responders like acetone and 2-butanone)? If yes, $J(+)/R(-)$.			

6.0 C	ontini	uing	Calibra	ation
-------	--------	------	---------	-------

		Yes	No	NA
6.1	Are Continuing Calibration Summary forms present and complete?	and the second s		
6.2	Has a continuing calibration standard been analyzed for every 12 hours?			
6.3	Do any compounds have a % difference (%D) between initial and continuing calibration RRF outside QC limits (%D < 20%)?			<u> </u>
	If yes, a marginal increase (i.e., $<50\%$) in response $>20\%$ then J(+) only; a decrease in response then J(+)/UJ(-). For %D $> 50\%$, flag R(-); J(+).			
6.4	Do any compounds have an RRF < 0.05 (use 0.1 for poor responders like acetone and 2-butanone)? If yes, $J(+)/R(-)$.			
6.5	If Level IV, calculate a compounds RF and %D from ave RF to verify correctcalculations.			

Note:

7.0 Surrogate Recovery/ SMC (System Monitoring Compounds)

					Yes	No	NA
7.1	Are all sample	es listed on the app	propriate Surrogate Recovery Sun	nmary Form ?			
7.2	Are surrogate	recoveries within	acceptance criteria provided by th	e laboratory for all samples?			
7.3	If No in Secti	If No in Section 7.2, are these sample(s) or method blank(s) reanalyzed?					
7.4	If No in Section out.)	on 7.3, is any samp	ole dilution factor greater than 10°	? (Surrogate recoveries may b	e diluted		
	Note: If SMC	recoveries do not	meet acceptance criteria in samp	les chosen for the MS/MSD or	r diluted		
		> UCL	10% to LCL	< 10%			
	Positive	J	J	J			
	Non-detect	None	UJ	R			

ote:				
•				
	 	 ——————————————————————————————————————	 	

8.0 Matrix Spike/Matrix Spike Duplicate (MS/MSD) or one MS with a Sample Duplicate

		Yes	No	NA
8.1	Is a Matrix Spike/Matrix Spike Duplicate recovery form present?			
8.2	Are MS/MSDs analyzed at the required frequency of one matrix spike per ten samples and a duplicate per twenty for each matrix?			
8.3	Are all MS/MSD %Rs and RPDs within acceptance criteria specified in the QAPP?	et u		
	No action is taken on MS/MSD data alone. However, using informed professional judgment the data reviewer may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.			

Note:

9.0 Laboratory Control Sample (LCS)

		Yes	No	NA
9.1	Is an LCS recovery form present?			
9.2	Is an LCS analyzed at the required frequency of one per twenty field samples for each matrix?			
9.3	Are all LCS %Rs within acceptance criteria provided by the laboratory?			
	Action for specific compound outside the acceptance criteria: %R>UCL, J(+) only; %R <lcl, j(+)="" r(-).<="" td=""><td></td><td></td><td></td></lcl,>			

Note:

10. Internal Standards

					Yes	No	NA
10.1	Area > +100% Area < -50% Area < -10%						
		Area $> +100\%$	Area < -50%	Area < -10%			
	Positive	J	J	J			
	Non-detect	None	UJ	R			
10.2	Are retention tim	nes of internal standards within	n 30 seconds of the associate	ed calibration standard?	i osa i ili i -		
	Action: For shif	Action: For shift of a large magnitude, the reviewer may consider partial or total rejection of the data for					
	non-detects of th	at sample fraction.					

Note:

11.0 TCL Id	lentification (Only for Level IV Review)	Yes	No	NA
11.1	Is the relative retention time (RRT) of each reported compound within 0.06 RRT units of the standard			
	RRT in the continuing calibration?	Sanda 1990		
11.2	Are the three ions of greatest intensity present in the standard mass spectrum also present in the sample			
	mass spectrum; and do sample and standard relative ion intensities agree within 30%?	manda La		
Note:				
12.0 TCL/T	IC Quantitation and Reported Detection limits	Yes	No	NA
12.1	Are RLs used consistent with those specified in the QAPP?			
12.2	Are these limits adjusted to reflect dilutions and/ or percent solids as required?			
12.4	Are any positives reported that exceed the linear range of the instrument? If yes, than flag "J".			
12.5	If Level IV, calculate a few positive results using the curve RF to verify correct calculations			
Note:				
12 O Field D	Duplicate Samples		No	NA
13.0 Field D		Yes	NO	IVA
l————	Were any field duplicates submitted for VOC analysis?	Miss.		
13.2	Were all RPD or absolute difference values within the control limits outlined in the QAPP?			L
	Action: No qualifying action is taken based on field duplicate results, however the data validator should			
<u> </u>	provide a qualitative assessment in the data validation report.	<u> </u>		
Note:				
		·		
14.0 Data Co	ompleteness	Yes	No	NA
14.1	Is % completeness within the control limits? (Control limit: Check QAPP or use 95% for aqueous			
	sample, 90% for soil sample)	vo.		
14.1.1	Number of samples:		· · · · · · · · · · · · · · · · · · ·	L
14.1.2	Number of target compounds in each analysis:	7		
14.1.3	Number of results rejected and not reported:	1		
	% Completeness = (14.1.1 x 14.1.2 - 14.1.3) x 100/(14.1.1 x 14.1.2)	7		
	% Completeness =			
Note:				

DATA VALIDATION WORKSHEET SEMIVOLATILE ORGANIC ANALYSIS - NFGs modified for RCRA

Reviewer:	Project Name:	;		
Date:				
Lab:	b: SDG No.: Chain of Custody/Sample Condition 1.1 Do Chain-of-Custody forms list all samples analyzed? 1.2 Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained? 1.3 Do the Traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt, condition			
1.0 Chain c	of Custody/Sample Condition	Yes	No	NA
1.1	Do Chain-of-Custody forms list all samples analyzed?			T
1.2	Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained?			
1.3	Do the Traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt, condition		1900	
	of samples, analytical problems or special circumstances affecting the quality of the data?			
Note:				
2.0 Preserv	ration/ Holding Time	Yes	No	NA
2.1	Do sample preservation, collection and storage condition meet method requirement?			
	Action: Positive sample results <5X (or 10X for common volatile lab contaminants) the highest concentration of			
	any blank should be qualified "U" and the result elevated to the RL for estimate concentrations.			
2.2	Have any technical holding times, determined from sampling to date of analysis, been exceeded? (See attached			
	Extraction: Soil/Sediment 14 days - aqueous 7 days Analysis: 40 days			
2.3	Have any technical holding times grossly (twice the holding time) been exceeded? If yes, J(+)/R(-).		E. a	
Note:				
3.0 GC/MS	Instrument Performance Check	Yes	No	NA
3.1	Are GC/MS Tuning and Mass Calibration forms present for DFTPP?	163	110	 '''
3.2	Have all samples been analyzed within twelve hours of the tune?	1		
	If no, the data for the affected standards, blanks, field samples or QC samples are rejected "R".	<u> </u>		
3.3	Have ion abundance criteria for DFTPP been met for each instrument used?		 	
J.J.	The foll abundance of the first post that for each matument used.	Allen and the second		
	If no, applying professional judgement standards, blanks, field samples and QC samples may be rejected "R".			Į
Note:	17. 11.5, apply 11.5 provides in a standard of the standard of	ــــــــــــــــــــــــــــــــــــــ	<u></u>	
				·

4.0 Blanks	(Method Blanks and Field Blanks)	Yes	No	NA
4.1	Is a Method Blank Summary form present for each batch?			
4.2	Do any method/instrument/reagent blanks have positive results (TCL, and/or TIC)?		and the second	
4.3	Do any field equipment blanks have positive results (TCL, and/or TIC)?			
	Action: Positive sample results <5X (or 10X for common lab contaminants) the highest concentration of any			
	blank should be qualified "U" and the result elevated to the RL for estimate concentrations.			
4.4	If Level IV, review raw data and verify all detections for blanks were reported.			
Note:				
5.0 GC/MS	Initial Calibration	Yes	No	NA
5.1	Are Initial Calibration summary forms present and complete for each instrument used?	N .		
5.2	Are calibrations linear applying either %RSD <15 or R >0.99? If no, J(+)/UJ(-).			
5.3	Do any compounds have an RRF < 0.05 ? If yes, $J(+)/R(-)$.		***************************************	
5.4	If Level IV, verify a RRF and a %RSD calculation.			
Note:				
		·····		
6.0 Continu	ning Calibration	Yes	No	NA
6.1	Are Continuing Calibration summary forms present and complete for each instrument used?	\$ 1.00mm		
6.2	Has a continuing calibration standard been analyzed for every 12 hours of sample analysis?			
6.3	Do any compounds have a % difference (%D) between initial and continuing calibration RRF > 20%?		Prime America Paddad	
	If yes, a marginal increase (i.e., <50%) in response >20% then J(+) only; a decrease in response then J(+)/ UJ(-).			·
	For %D > 50%, flag R(-); $J(+)$.			
6.4	Do any continuing standard compounds have a RRF < 0.05? If yes, J(+)/R(-).			
6.5	If Level IV, verify a %D calculation.			
Note:		<u> </u>		
				
				· · ·
				···

7.0 Surroga	te Recovery				Yes	No	NA NA
7.1	Are all samples li	sted on the app	propriate Surrogate Recovery S	Summary Form ?			
7.2	Are surrogate reco	overies within	acceptance criteria provided by	y the laboratory for all samples and method bl	anks?		
7.3	Are more than one	e of either frac	tion outside the acceptance cri	teria?		gyv.gr	
7.4	If Yes in Section	7.3, are these s	ample(s) or method blank(s) re	eanalyzed?			
7.5	If Yes in Section	7.3, is any sam	ple dilution factor greater than	10?			<u> </u>
	Note: If SMC rec	overies display	y unacceptable recoveries in th	e MS and/ or diluted samples, then no reanaly	sis is		
	required and acids	and base/ neu	trals are assessed separately.				
		UCL	10% to LCL	< 10%			
	Positive	J	J	J			
	Non-detect N	one	UJ	R	<u>_</u>		
Note:							
							
8.0 Matrix	Spike/Matrix Spike	Duplicate (N	IS/MSD) of MS and a field sa	ample duplicate	Yes	No	NA
8.1			Duplicate recovery form presen				
8.2	Are MS/MSDs an	alyzed at the r	equired frequency not to excee	ed twenty field samples for each matrix?	1		
8.3	Are all MS/MSD	%Rs and RPD	s within acceptance criteria pr	ovided in the QAPP?			
	No action is taken	on MS/MSD	data alone. However, using in	formed professional judgment the data review	er er		
	may use the MS a	nd MSD resul	ts in conjunction with other Q	C criteria and determine the need for some	1		
	qualification of th	e data.					
Note:							
9.0 Laborat	tory Control Samp	le (LCS)			Yes	No	NA
9.1	Is an LCS recover		1?				
9.2			frequency for each matrix?				
9.3	Are all LCS %Rs				F		
	If no, for individu	al compounds	with %R>UCL, J(+) only; %F	R < LCL, J(+)/R(-). If more than half of the spi	ke		
	compounds displa	y unacceptabl	e recoveries, use professional	udgement to qualify data.			- · ·
9.4	If Level IV, verify	the % recove	ries are calculated correctly.				
Note:							

10.0 Interna	al Standards	Yes	No	NA
10.1	Are internal standard area of every sample and blank within upper and lower QC limits for each continu	iing		
	Area > +100% Area < -50% Area < -10%			
	Positive J J			
	Non-detect None UJ R			
10.2	Are retention times of internal standards within 30 seconds of the associated calibration standard?			
	Action: The chromatogram must be examined to determine if any false positives or negatives exist.			
Note:				
11.0 TCL/T	TC Quantitation and Reported Detection Limits (Level IV Only)	Yes	No	NA
11.1	Are RLs adjusted to reflect sample dilution(s) and, for soil, sample moisture?			†
11.2	Were any compounds reported at levels exceeding the linear range of the instrument? If yes, flag "J"		***************************************	
11.3	If Level IV, Is the relative retention time (RRT) of each reported compound within 0.06 RRT units of the	ne	3.4 (2.5 (2.4 (2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (2.5	
	standard RRT in the continuing calibration?			
11.4	If Level IV, are all ions present in the standard spectrum at a relative intensity greater than 10% also pre-	esent in		
	the sample spectrum; and do sample and standard ion intensities agree within 30%?	4 "		
11.5	If Level IV, are ions >10% in the reference spectrum present in the sample TIC and agree within 20%?	Marine and Arthur San	· 4	
Note:				
12.0 Field D	Duplicate Samples	Yes	No	NA
12.1	Were any field duplicates submitted for VOC analysis?		i	
12.2	Were all RPD or absolute difference values within the control limits?	4,64		
	No action is taken based on field duplicate results.	To the same of the		
Note:				
13.0 Data Co	ompleteness	Yes	No	NA NA
13.1	Is % completeness within the control limits? (Control limit: Check QAPP or use 95% for aqueous sam			
13.1.1	Number of samples:	pic, 7070		<u> </u>
13.1.2	Number of target compounds in each analysis:			
13.1.3	Number of results rejected and not reported:			
	% Completeness = (13.1.1 x 13.1.2 - 13.1.3) x 100/(13.1.1 x 13.1.2)			
	% Completeness =			
Note:				

DATA VALIDATION WORKSHEET PESTICIDE/PCB ANALYSIS - NFGs Modified for RCRA

Reviewer:	Project Name:			
Date:	Project Number:			
Lab:	SDG No.:			
1.0 Chain o	f Custody/Sample Condition	Yes	No	NA
1.1	Do Chain-of-Custody forms list all samples which were analyzed?			
1.2	Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained?			
1.3	Do the traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt,			
1.4	Do sample preservation, collection and storage condition meet method requirement?			
·	If samples were not on ice or the ice was melted upon arrival at the laboratory and the temperature of the			
	cooler was elevated, based on professional judgement the reviewer may flag positive results with a "J" and			
	non-detects "UJ".			
Note:				
		_		
2.0 Holding	g Time	Yes	No	NA
2.1	Have any technical holding times, determined from sampling to date of analysis, been exceeded? (See		V	
	Extraction: Soil/Sediment 14 days - aqueous 7 days Analysis: 40 days			
2.2	Have any technical holding times been grossly (twice the holding time) exceeded? If yes, J(+)/R(-).			
Note:				
3.0 Blanks	(Method Blanks and Field Blanks)	Yes	No	NA
3.1	Has a method blank been analyzed at least once every 12 hours for each GC instrument used?			
3.2	Has a method blank been analyzed for each batch?			
3.3	Do any blanks have positive results?			
3.4	Are there field equipment blanks associated with every sample?			
	Action: Positive sample results <5X the highest concentration of any blank should be qualified "U" and the			
	precion. I oshive sample results "571 the ingliest concentration of any blank should be qualified "6" and the	ł .		
	result elevated to the RL for estimate concentrations.			
3.5	•			

4.0 Initial	Calibration	Yes	No	NA
4.1	Are Initial Calibration summary forms present and complete for each instrument used?			
4.2	Are response factors stable (%RSD values $< 20\%$ or $r > 0.995$) over the concentration range of the			
	calibration? If no, J(+)/UJ(-).			
4.3	If Level IV, verify a RRF and a %RSD calculation.			
Note:				
5.0 GC/EC	D Instrument Performance Check	Yes	No	NA
5.1	Has the 4,4'-DDT percent breakdown less than or equal to 20%? If No, for positive DDT results, DDT-			
	L(+), DDD/DDE - NJ(+). For non-detect DDT results, DDD/DDE - R(+).			
5.2	Has the endrin percent breakdown less than or equal to 20%? If No, for positive endrin results, endrin-	, i		
	L(+), endrin aldehyde/ketone - NJ(+). For non-detect DDT results, endrin aldehyde/ketone - R(+).		ŀ	
5.3	Has the combined 4,4'-DDT and endrin percent breakdowns less than or equal to 30%? If No, for positive			
	DDT/endrin results, DDT/endrin-L(+), DDD/DD/endrin aldehyde/endrin ketone - NJ(+). For non-detect			1
	DDT/endrin results, DDD/DDE/endrin aldehyde/endrin ketone - R(+).			
Note:				
6.0 Contin	uing Calibration	Yes	No	NA
6.1	Are Continuing Calibration summary forms present and complete for each instrument used?			
6.2	Has a continuing calibration standard been analyzed at the beginning of each day, every 10 samples, and at			1
	the end of the run?			
6.3	Do any compounds have a % difference (%D) values between initial and continuing calibration RRF			i
	outside QC limits (%D < 15%)?	<u> </u>		<u> </u>
	If yes, a marginal increase (i.e., $<50\%$) in response $>15\%$ then J(+) only; a decrease in response then J(+)/			
	UJ(-). For %D > 50%, flag R(-); J(+).			
6.4	If Level IV, verify a %D calculation.	<u> </u>		
Note:				,

7.0 Surrog	ate Recovery				Yes	No	NA NA
7.1	Are all samples	listed on the appropria	e Surrogate Recovery Summar	y Form ?	4.2		
7.2	Are surrogate re	coveries within accepta	nce criteria for all samples and	method blanks?			
7.3	If No in Section	7.2, are these sample(s) or method blank(s) reanalyzed	1?			
7.4			tion factor greater than 10?. (re				
	Note: If recover	ries are unacceptable fo	r MS/MSD and/or diluted samp	oles, then no reanalysis is required			
		> UCL	10% to LCL	< 10%			
	Positive	J	J	J	į		
	Non-detect	None	UJ	R			
Note:							
80 Matrix	Snike/Matrix Sni	ke Duplicate (MS/MS	D)		Yes	No	NA.
8.1			te recovery form present?				
8.2			frequency for each matrix?				
8.3		O %Rs and RPDs withi					
				professional judgment the data			
				C criteria and determine the need	for		
	some qualificati		,	•	1		
Note:							=
QA Labor	atory Control Sam	unle (LCS)			Yes	No	NA
9.1		ery form present?			103		 '''
9.1		l at the required frequer	ney for each matrix?				
9.2			teria? If no, for %R>UCL, J(+) only: %R <l(1 1(+)="" r(-)<="" td="" =""><td></td><td>-</td><td> </td></l(1>		 -	
9.3		fy the % recoveries are) Omy, /OK LCL, 3(1)/K(-).		L	
Note:	In Level IV, ven	ry the 70 recoveries are	calculated correctly.				
Note.							

10.0 TCL/T	FIC Quantitation and Reported Detection Limits (Level IV Only)	Yes	No	NA_
10.1	Are RLs adjusted to reflect sample dilution(s) and, for soil, sample moisture?			
10.2	Does the retention time of each reported compound fall within the RT window? If not, inquire of lab,	:		
	change results if necessary.			
10.3	Is there evidence of unreported peaks? If yes, inquire of laboratory, calculate and add results if necessary.			
10.4	Verify confirmation requirements have been implemented per SW-846 specifications, if not inquire of laboratory; correct results if necessary.			
Note:				
11.0 Field I	Duplicate Samples	Yes	No	NA
11.1	Were any field duplicates submitted for analysis?			
11.2	Were all RPD or absolute difference values within the control limits?			
	No action is taken based on field duplicate results.			
Note:				
12.0 Data C	Completeness	Yes	No	NA
12.1	Is % completeness within the control limits? (Check QAPP or use 95% for aqueous or 90% for soil)			
12.1.1	Number of samples:			
12.1.2	Number of target compounds in each analysis:			
12.1.3	Number of results rejected and not reported:			
	% Completeness = (12.1.1 x 12.1.2 - 12.1.3) x 100/(12.1.1 x 12.1.2)			
	% Completeness =			
Note:				

Page 4 of 4

DATA VALIDATION WORKSHEET INORGANIC - ICP, ICP-MS, GFAA, and CVAA - for RCRA

SDG N	0.:			Pr	ojec	t Na	me:						
					Re	viev							
						D	ate:			·			
1.0 Ch	ain of Custody/Sample Condition/Raw Data		ICP		10	P-M	IS	(JFA/	4	CV	AA-	Hg
		Yes	No	NA	Yes	No	NA		No	NA		No	NA
1.1	Do Chain-of-Custody forms list all samples that were analyzed?	13.00			4,7			1			*		
1.2	Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained?	100						**			1,		
1.3	Do the traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data?											*	
1.4	If samples were not properly preserved, or the ice was melted upon arrival at the laboratory and the temperature of the cooler was elevated, based on professional judgement the reviewer may flag positive results with a "J" and non-detects "UJ".				3			\$35			對		
1.5	Are the digestion logs present and complete with pH values, sample weights, dilutions, final volumes. % solids (for soil samples), and preparation dates? For any missing or incomplete documentation, contact the laboratory for explanation/resubmittal.				57.								
Note:													
2.0 Ho	olding Time		ICP		10	CP-M	1S		GFA/	4	CV	AA-	Hg
		Yes	No	NA	Yes	No	NA	Yes	No	NA			
2.1	Have any technical holding times, determined from date of collection to date of analysis, been exceeded? (Hg: 28days, other metals: 6 months) Action: J(+)/UJ(-). If the holding times are grossly exceeded (twice the holding time criteria), J(+)/R(-).		4						1				
Note:													
3 0 O	nantitation (Level IV Only)		ICP		10	CP-N	18		GFA/		CV	AA-	u _a
3.0 Q1	iantitation (Ecver iv Only)		T							NA			
3.1				IIIA	1 62	110	ואייון		140			140	IVA
] 3.1	Verify transcription and calculations for a minimum of one results for each form. Extent the audit and make corrections as necessary if errors are encountered.	Yes			100			*		1			i
3.1	Verify transcription and calculations for a minimum of one results for each form. Extent the audit and make corrections as necessary if errors are encountered. Were all results and detection limits for solid-matrix samples reported on a dry-weight basis?	Yes									200	\dashv	\dashv
	Were all results and detection limits for solid-matrix samples reported on a dry-weight basis?							792					
3.2		Yes									200		

.0 In	strument Calibration						ICP		IC	P-M	s [FA.	Α .	CV	AA-	-Hg
						Yes	No	NA	Yes	No	NA	Yes	No	NA	Yes	No	N,
4.1	Are sufficient standards	included in th	e calibration curv	e? (ICP/ICP-MS:	blank + one standard; GFA	V:									22.5		
	blank + three standards v	vith one at [C	RDL]; CVAA: bla	ank + five standare	Is with one at [CRDL]) If no	it .						44					
	applying professional jud	gement the rev	iewer may flag J(+); R(-).													L
4.2	Are the correlation coeffi	cients > 0.995'	? (for GFAA and C	CVAA) Action: J(+)/UJ(-).												
4.3	Was an initial calibration	verification (I	CV) analyzed at tl	ne beginning of each	ch analysis? Action: If no, u	se											
	professional judgment to	determine affe	ect on the data and	note in reviewer na	irrative.										4	Ĺ	_
4.4					or every 2 hours, whichever				7. A							l	ļ
	more frequent? Action:	If no, use pr	rofessional judgm	ent to determine a	affect on the data and note					1	ł				ningy :	ŀ	Ì
	reviewer narrative.					-7/A/L)			14			4.4		L	in de		<u> </u>
4.5		•	coveries (ICV and	CCV) within the	control limits? Mercury (809	ó-			4			3,3		ŀ	ji.		
	120%) and other Metals (90%-110%).					1			- 1		12.			3.5		
	Action:	R(+/-)	J(+)/UJ(-)	J(+)	R(+)	4			at.						1		
	Mercury	< 65%	65% - 79%	121% - 135%	> 135%	1.00			***								
	Other Metals	< 75%	75% - 89%	111% - 125%	> 125%	20, 8				- [()			184		

5.0 Bla	5.0 Blanks		ICP			ICP-MS			GFAA			CVAA-H		
		Yes	No	NA	Yes	No	NA	Yes	No	NA	Yes	No	NA	
5.1	Were preparation blank (PB) prepared at the appropriate frequency (one per batch)?				45						11.3			
5.2	Are there reported PB values > MDL?								27			889, 141 127, 141		
5.3	Were initial calibration blanks (ICB) analyzed? Action: If no, make a note in the DV Report.	1,2			<i>3</i> 3						چه کورد د جود			
5.5	Were continuing calibration blanks (CCB) analyzed after every 10 samples or every 2 hours whichever is more frequent? Action: If no, make a note in the DV Report.				esept.									
5.5	Are there reported ICB or CCB values > MDL?					7.3						3 . 3		
5.6	Are there samples with concentrations less than five times the highest level in associated blanks? Action: If yes, flag U at reported concentration.													
5.7	Are there samples with non-detect results or with concentrations less than five times the most negative value in associated blanks? Action; If yes, $J(+)/UJ(-)$.								85. 12. 4 ⁵					
5.8	If level IV, review all raw data blank results and verify that the results were reported correctly.													

Note:

DATA VALIDATION WORKSHEET HERBICIDES ANALYSIS - NFG modified for RCRA

Reviewer:	Project Name	:		
Date:	Project Number	:		
Lab:	SDG No.	:		
1.0 Chain	of Custody/Sample Condition	Yes	No	NA
1.1	Do Chain-of-Custody forms list all samples that were analyzed?			
1.2	Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained?			
1.3	Do the traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt,		*	
	condition of samples, analytical problems or special circumstances affecting the quality of the data?			
Note:				
			·	
2.0 Preser	vation/ Holding Time	Yes	No	NA
2.1	Do sample preservation, collection and storage condition meet method requirement?			
	If samples were not on ice or the ice was melted upon arrival at the laboratory and the temperature of the			•
	cooler was elevated, based on professional judgement the reviewer may flag positive results with a "J" and			
2.2	Have any technical holding times, from sampling to date of analysis, been exceeded? If yes, J(+)/UJ(-).		Record of the second	ĺ
	Extraction: Soil/Sediment 14 days - aqueous 7 days Analysis: 40 days			
2.3	Have any technical holding times been grossly (twice the holding time) exceeded? If yes, J(+)/R(-).			
Note:				
		<u> </u>		
			· · ·	
3.0 Blank	s (Method Blanks and Field Blanks)	Yes	No	NA
3.1	Is a Method Blank Summary form present for batch?	net, styr v		
3.2	Do any method/instrument/reagent blanks have positive results?	22	3 1 1 1000	
3.3	Do any field/rinse/equipment blanks have positive results? If Yes, use same rules above.			
	Action: Positive sample results <5X the highest concentration of any blank should be qualified "U" and the		lm	
	result elevated to the RL for estimate concentrations.			
3.4	If Level IV, review raw data and verify all detections for blanks were reported.	1		
Note:			-	
			· · · · · · · · · · · · · · · · · · ·	

4.0 Initial	Calibration				Yes	No	NA
4.1	Are Initial Calibra	ation Summary Forms p	present and complete for each ins	trument used?			
4.2	Are five standard	s included in the calibra	tion curve?				
4.3	Are response fact	tors stable (%RSD valu	es $< 20\%$ or $r > 0.995$)? If not, J	(+)/UJ(-).			
4.4	If Level IV, verif	y a %RSD calculation.					
Note:							
5.0 Contin	uing Calibration				Yes	No	NA
5.1	Are Continuing C	Calibration summary for	ms present and complete for each	n instrument used?			
5.2	Has a CCC been	analyzed at the beginning	ng of each day, every 10 samples	, and at the end of the run?			
5.3	Do any compoun	ds have a %D > 15%?					
	If yes, a marginal	l increase (i.e., <50%) in	n response $>15\%$ then $J(+)$ only;	a decrease in response then J(+	·)/ UJ(-		
). For $\%D > 50\%$	%, flag R(-); J(+).					
5.4	If Level IV, verif	y a %D calculation.					
Note:							
6.0 Surrog	gate Recovery				Yes	No	NA
6.1	Are all samples listed on the appropriate Surrogate Recovery Summary Form?						
6.2	Are surrogate recoveries within acceptance criteria for all samples and method blanks?						
6.3	If No in Section 7.2, are these sample(s) or method blank(s) reanalyzed?						
6.4	If No in Section 7.3, is any sample dilution factor greater than 10?.						<u> </u>
	Note: If SMC recoveries do not meet acceptable criteria for SMCs in samples chosen for the MS/MSD and						
		then no reanalysis is req	uired.				
	%R	> UCL	10% to LCL	< 10%			
	Positive	J	J	J	Ì		
	Non-detect	None	UJ	R			
Note:							
	4						

7.0 Matri	x Spike/Matrix Spike Duplicate (MS/MSD)	Yes	No	NA		
7.1	Is a Matrix Spike/Matrix Spike Duplicate recovery form present?					
7.2	Are MS/MSDs analyzed at the required frequency for each matrix?					
7.3	Are all MS/MSD %Rs and RPDs within acceptance criteria?	د فراد دعمدد				
	No action is taken on MS/MSD data alone. However, using informed professional judgment the data					
	reviewer may use the MS and MSD results in conjunction with other QC criteria and determine the need for					
	some qualification of the data.					
Note:						
8.0 Labor	.0 Laboratory Control Sample (LCS)					
8.1	Is an LCS recovery form present?					
8.2	Is LCS analyzed at the required frequency for each matrix?					
8.3	Are all LCS %Rs within acceptance criteria?					
	If no, for individual compounds with %R>UCL, J(+) only; %R <lcl, half="" if="" j(+)="" more="" of="" r(-).="" spike<="" td="" than="" the=""><td></td><td></td><td></td></lcl,>					
8.4	If Level IV, verify the % recoveries are calculated correctly.					
Note:						
9.0 TCL	Quantitation and Identification (Level IV Only)	Yes	No	NA		
9.1	Are RLs adjusted to reflect sample dilution(s) and, for soil, sample moisture?					
9.2	Does the retention time of each reported compound fall within the RT window? If not, inquire of lab, change					
9.3	Is there evidence of unreported peaks? If yes, inquire of laboratory, calculate and add results if necessary.		^			
0.4	Verify confirmation requirements have been implemented per SW-846 specifications, if not inquire of					
9.4	laboratory;correct results if necessary.					
Note:						

10.0 Field	10.0 Field Duplicate Samples		No	NA	
10.1	Were any field duplicates submitted for analysis?	į			
10.2	Were all RPD or absolute difference values within the control limits?				
	No action is taken based on field duplicate results alone.				
Note:					
11.0 Data Completeness		Yes	No	NA	
11.1	Is % completeness within the control limits? (95% for aqueous, 90% for soil)				
11.1.1	Number of samples:				
11.1.2	Number of target compounds in each analysis:				
11.1.3	Number of results rejected and not reported:				
	% Completeness = (12.1.1 x 12.1.2 - 12.1.3) x 100/(12.1.1 x 12.1.2)				
	% Completeness =				

Note:

DATA VALIDATION WORKSHEET

Reviewer:	Dioxins and Furans Analysis Project Name:				
Date:	Project Numl		t Number:		
DV Level:	II III IV	La	aboratory:		
Review Docu	ment:		SDG No.:		
X NFG/S	W-846	M	ethod No.:		
1.0 General	: Chain-of-Custody/D	ata Deliverables	Yes	s No	NA
1.1	Do Chain-of-Custody	forms list all samples which were analyzed?			
1.2	Are all Chain-of-Custo	ody forms signed, indicating sample chain-of-custody was maintained?	Š.,		
1.3	Do the traffic Reports	s, chain-of-custody, and lab narrative indicate any problems with sample receip	t, condition		
	of samples, analytical	problems or special circumstances affecting the quality of the data?			
Notes:					

2.0 Preserva	tion/ Holding Times		Yes	s No	NA
2.1	Does sample preserva	tion, collection and storage meet method requirement?			
2.2	Have any technical ho	olding times, determined from date of sampling to date of analysis, been exceed	led? If yes,		
	J(+)/UJ(-).				
2.3	Have any technical ho	olding time grossly (twice the holding time) been exceeded? If yes, $J(+)/R(-)$.		Live ve	
Notes:					
3.0 Blanks (Laboratory and Field)		Yes	s No	NA
3.1	Is a Method Blank Su	mmary form present for each batch?			
3.2	Do any method/instru	ment/reagent blanks have positive results (TCL, and/or TIC)?		13 3 A.S. 191 1	
3.3	Do any field equipment	nt blanks have positive results (TCL, and/or TIC)?			
	Action: Positive samp	le results <5X (or 10X for phthalate contaminants) the highest blank concentrati	on should		
	-	he result elevated to the RL for values less than the RL.			į
3.4		w data and verify all detections for blanks were reported.			
Notes:					الب
				*** ***	

4.0 Instrument Calibration			No	NA
4.1	Are five standards included in the calibration curve? If no, note in the DV Report.			
4.2	Was a tune run at the start of every twelve hours? If no, note in the DV Report.			
4.3	Was a CCV analyzed every 12 hours? If no, J(+)/UJ(-) all samples analyzed after the last passing CCV.			
4.4	Are all target compound %RSDs and/or %Ds within ± 20%? If not apply J(+)/UJ(-).			
4.5	Are all reference compound %RSDs and/or %Ds within ± 30%? If not apply J(+)/R(-).			
4.6	If Level IV, check for any transcription/calculation errors.			
Notes:				
5.0 Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	Yes	No	NA
5.1	Is the matrix spike/matrix spike duplicate recovery form present?			
5.2	Were matrix spikes analyzed at required frequency (one per 20 samples per batch) for each matrix?	č		
5.3	Was a field blank used for MS/MSD analyses?			
5.4	Are there any %R or %RPDs outside the laboratory QC limits?			
	No action is taken on MS/MSD data alone. However, using informed professional judgment the data reviewer			
	may use the MS and MSD results in conjunction with other QC criteria and determine the need for some			
	qualification of the data.			
5.5	If Level IV, were there any transcription /calculation errors?		and the second	
Notes:				
		·· <u>··</u> ·		
6.0 Labor	atory Control Sample (LCS)	Yes	No	NA
6.1	Is the LCS recovery form present?			
6.2	Were LCS analyzed at required frequency (one per 20 samples per batch) for each matrix?	3		
6.3	Are there any %R for LCS/LCSD recoveries outside the laboratory QC limits?			
	If no, for individual compounds with $R>UCL$, $J(+)$ only; $R, J(+)/R(-). If more than half of the spike$			
6.4	If Level IV, were there any transcription /calculation errors?			
Notes:				

7.0 Field D	7.0 Field Duplicate					No	NA NA
7.1	Was a field duplicate analyzed?						
7.2			ithin control limits?				
, . <u> </u>	No action is taken based on duplicate results.						·
Notes:							
8.0 Sample	Results/Detection	Limit Verificati	on		Yes	No	NA
8.1	Are all sample re	sults within the c	alibrated range? If not apply J	(+) only.			
8.2	Do detection limits meet those required by the project QAPP and were properly adjusted for dilution factors and moisture?						
8.3	If Level IV, wer	e there any transc	ription /calculation errors?				,
Notes:							
9.0 Interna	.0 Internal Standard and Clean-Up Standard Recovery						NA
9.1	Are all samples	listed on the appr	opriate Standard Recovery Su	ımmary Form ?			
9.2	Are standard recoveries within acceptance criteria for all samples and method blanks?						
9.3	If No in Section 7.2, are these sample(s) or method blank(s) reanalyzed?						
9.4	If No in Section	7.3, is any sample	e dilution factor greater than 1	0? (Surrogate recoveries may be di	luted out.)		
		> UCL	10% to LCL	< 10%			
	Positive	J	J	J			
	Non-detect	None	UJ	R			
Notes:							
							
	tification and Qu				Yes	No	NA
10.1			hose specified in the QAP		E .		ļ
10.2	Are these limits adjusted as required for moisture and dilutions?						
10.3	Are any positive results reproted exceeding the linear range of the calibration?						<u></u>
10.4	Calculate a mi	nimum of one re	esult for each form. Increas	se audit and correct results as n	ecessary.		
Notes:							

11.0 Data C	ompleteness	Yes	No	NA
11.1	Is % completeness within the control limits? (aqueous: 95% and soil: 90%)			
11.1.1	Number of samples:			
11.1.2	Number of target compounds in each analysis:			
11.1.3	Number of results rejected and not reported:			
	% Completeness = $(10.1.1 \times 10.1.2 - 10.1.3) \times 100/(10.1.1 \times 10.1.2)$			
	% Completeness =			

Notes:

Data Validation Plan Sauget Area 2 Sites Group Revision No.: 1 Date: 05/25/01

APPENDIXB

Example Data Validation Report

DATA VALIDATION REPORT - Level IV Review

SDG No.:L15229	Fraction: VOCs - CLP
Lab:STL - Quanterra	Project Name:_
Reviewer:JA	Date:February 15, 2000

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied (as required), the data review checklist, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the National Functional Guidelines for Organic Data Review (February 1994) and the specifics of the analytical method employed.

Major

Anomalies: None.

Minor

Anomalies:

The VOCs acetone (39.9%), 2-butanone (32.9%), and 2-hexanone (35.1%) displayed %Ds greater than the acceptance criterion in one continuing calibration (12/21/99 09:05). Acetone, 2-butanone, and 2-hexanone results in the associated samples were flagged "UJ, c". The VOCs chloroethane (-32.8%), acetone (46.7%), 2-butanone (32.8%), and 2-hexanone (31.8%) displayed %Ds greater than the acceptance criterion in one continuing calibration (12/22/99 09:23). These four results in the associated samples were flagged as "J" or "UJ, c".

The method blank, VBLK2, contained two tentatively identified compounds (TICs, hexamethylcyclotrisiloxane at 6 μ g/L and octamethylcyclotetrasiloxane at 10 μ g/L). Since these two siloxanes are known released from the analytical column, all siloxane results were crossed out by the reviewer. The storage blank, VHBLK1, contained acetone at 9 μ g/L and one TIC (octamethylcyclotetrasiloxane) at 8 μ g/L. Acetone results in the associated samples were flagged as non-detects at the CRDL. Since the siloxane result was crossed out due to released from the analytical column, this siloxane result was not used to assess associated samples.

The trip blank contained acetone at 7 μ g/L. The equipment blank, EB2, contained acetone at 9 μ g/L and one TIC (octamethylcyclotetrasiloxane) at 8 μ g/L. Since acetone results were previously flagged as non-detects due to storage blank contamination, these results were not used to assess associated samples. Since the siloxane result was crossed out due to released from the analytical column, this siloxane result was not used to assess associated samples.

All TICs, except those crossed out due to released from analytical column, were flagged "NJ, Q".

SDG: L15229 Page No.: 2 of 2

Correctable

Anomalies: None.

Comments: The CRDLs were raised in samples MW07D, MW08D, MW38D, and

MW38DDup due to dilution.

Signed: Oi, Chai-dun

Quanterra 4101 Shuffel Drive, NW North Canton, Ohio 44720-6961

330 497-9396 Telephone 330 497-0772 Fax www.quanterra.com

SDG NARRATIVE

This narrative pertains to samples received from the Dames & Moore from the Site. This data package, completed by Severn Trent Laboratories, Inc. formerly Quanterra Incorporated North Canton, consists of data from the volatile analyses of eleven (11) water samples analyzed using the CLP SOW OLM03.1 protocol.

Preliminary results were provided by facsimile transmission to Bruce Pletch on January 3, 2000.

The following is a listing of the samples in SDG L15229:

		Sample
Client ID	Laboratory ID	Receipt Date
MW08D	D6D75	12/15/99
DISCH-1	D6D7C	12/15/99
DISCH-1DUP	D6D7E	12/15/99
MW38D	D6D7F	12/15/99
MW38DDUP	D6D7H	12/15/99
FB2	D6D7J	12/15/99
MW07S	D6D7K	12/15/99
MW07D	D6D7L	12/15/99
MW04S	D6D7M	12/15/99
MW04D	D6D7P	12/15/99
TRPBLK	D6DC9	12/15/99

EPA SAMPLE NO.

Lab Name: QUANTERRA, INC. Contract:	FB2	
Lab Code: QESOH Case No.: SAS No.: S	SDG No.: L15229	
Matrix: (soil/water) WATER Lab Sample	ID: D6D7J101	
Sample wt/vol: 5.000 (g/ML) ML Lab File II): VOL6475	
Level: (low/med) LOW Date Receiv	red: 12/15/99	
% Moisture: not dec Date Analyz	ed: 12/21/99	
GC Column: DB624 ID: 0.53 (mm) Dilution Fa	ictor: 1.0	
Soil Extract Volume: (uL) Soil Alique	ot Volume:(uL	
CONCENTRATION UNI CAS NO. COMPOUND (ug/L or ug/kg) U		
74-87-3	10 U U U U U U U U U U U U U U U U U U U	
79-00-5	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	

FORM I VOA

EPA SAMPLE NO.

		VOLATILE	OKGANT	CS AWALISTS	DATA SHEET	
		TENTA	/LIAELA	IDENTIFIED	COMPOUNDS	
Tah	Name:	QUANTERRA,	INC.	Co	ontract:	FB2
	*******	Z 02 = 1 = 1 = 1				/

Lab Code: QESOH

LOW

SAS No.: SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7J101

Sample wt/vol:

Level:

5.000 (g/ML) ML

Case No.:

Lab File ID: VOL6475

Date Received: 12/15/99

% Moisture: not dec.

(low/med)

Date Analyzed: 12/21/99

GC Column: DB624

ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL

Soil Extract Volume: (uL)

CONCENTRATION UNITS:

Number TICs found: 1

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
2	CYCLOTETRASILOXANE, OCTAMETH	16.80		- E
3. 4. 5.				
6. 7. 8.				
10				
11. 12. 13.				
14. 15.				
16. 17. 18.				
19. 20. 21.				
22.				
24. 25. 26.				
27.				
30.				

FORM I VOA-TIC

EPA SAMPLE NO.

Lab Name: QUANTERRA, INC.	Contract: DISCH-1
Lab Code: QESOH Case No.:	SAS No.: SDG No.: L15229
Matrix: (soil/water) WATER	Lab Sample ID: D6D7C101
Sample wt/vol: 5.000 (g/ML) M	Lab File ID: VOL6490
Level: (low/med) LOW	Date Received: 12/15/99
Moisture: not dec.	Date Analyzed: 12/22/99
GC Column: DB624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
74-87-3	Ide Intoride Iffide Dethene Dethane Dethane Intoride Intoride Intor

FORM I VOA

Case No.:

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

D COMPOUNDS	
	DISCH-1
Contract:	

Lab Name: QUANTERRA, INC.

SAS No.:

SDG No.: L15229

EPA SAMPLE NO.

Lab Code: QESOH

Matrix: (soil/water) WATER

Lab Sample ID: D6D7C101

Sample wt/vol:

5.000 (g/ML) ML

Lab File ID: VOL6490

Level:

(low/med) LOW Date Received: 12/15/99

% Moisture: not dec.

Date Analyzed: 12/22/99

GC Column: DB624

ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL

Number TICs found: 2

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
1. 111-76-2 2. 27869-56-3	ETHANOL, 2-BUTOXY- BENZENE, 1-PHENYL-4-(2-CYANO	16.16 16.82	10 12	V LN	T, Q J, Q
4.					
6. 7. 8.					
10.					
12. 13. 14.					
16					
18. 19. 20.					
22					
24. 25. 26.					
27. 28. 29.					
30					

Q: TICS

FORM I VOA-TIC

EPA SAMPLE NO.

		1	2222
Lab Name: QUANTERRA,	INC.	Contract:	DISCH-1DUP
Lab Code: QESOH	Case No.:	SAS No.: SDG	No.: L15229
Matrix: (soil/water)	WATER	Lab Sample ID:	D6D7E101
Sample wt/vol:	5.000 (g/ML) ML	Lab File ID:	VOL6491
Level: (low/med)	FOM	Date Received:	12/15/99
% Moisture: not dec.		Date Analyzed:	12/22/99
GC Column: DB624	ID: 0.53 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	Tolume:(uL

CAS NO. COMPOUND CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/L

74-87-3-----Chloromethane 10 U
74-83-9-----Bromcmethane 10 U

75-01-4-----Vinyl Chloride 10 U ut.c Ū 10 75-00-3-----Chloroethane 75-09-2-----Methylene Chloride 10 U 67-64-1-----Acetone U 10 75-15-0-----Carbon Disulfide 75-35-4-----1,1-Dichloroethene
75-34-3----1,1-Dichloroethane
540-59-0----1,2-Dichloroethene (total) 10 U 10 U 10 U 67-66-3-----Chloroform 10 U 107-06-2----1,2-Dichloroethane 10 U J.C 78-93-3----2-Butanone 6 10 U 71-55-6----1,1,1-Trichloroethane 10 56-23-5------Carbon Tetrachloride U 75-27-4-----Bromodichloromethane 10 U 10 78-87-5-----1,2-Dichloropropane U 10061-01-5----cis-1,3-Dichloropropene 10 U 79-01-6-----Trichloroethene 10 U 10 124-43-1-----Dibromochloromethane U 10 U 79-00-5-----1,1,2-Trichloroethane 10 71-43-2-----Benzene U U 10061-02-6----trans-1,3-Dichloropropene 10 10 75-25-2-----Bromoform U 108-10-1-----4-Methyl-2-pentanone Ū W.C 591-78-6----2-Hexanone 10 U 10 U 127-18-4-----Tetrachloroethene 79-34-5-----1,1,2,2-Tetrachloroethane 10 U 108-88-3-----Toluene 10 U 108-90-7-----Chlorobenzene 10 U 10 100-41-4-----Ethylbenzene ט 100-42-5-----Styrene 1330-20-7------Xylenes (total) 10 0 10 U

FORM I VOA

EPA SAMPLE NO.

Lab Name: QUANTERRA, INC.

Contract:

DISCH-1DUP

Lab Code: QESOH Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7B101

Sample wt/vol: 5.000 (g/ML) ML

Lab File ID: VOL6491

Level: (low/med) LOW

Date Received: 12/15/99

% Moisture: not dec.

Date Analyzed: 12/22/99

GC Column: DB624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 2

CAS NUMBER COMPOUND NAME RTEST. CONC. ------_______ _____ 1. 111-76-2 ETHANOL, 2-BUTOXY-2. 556-67-2 CYCLOTETRASILOXANE, NIQ 10 NJ 16.25 CYCLOTETRASILOXANE, OCTAMETH 16.91 3._ 4. 9._ 10. 11._ 12. 13. 15._ 16._ 17. 18. 19. 20. 21. 22. 23. 24._ 25._ 26._ 27. 28. 29. 30.

FORM I VOA-TIC

OLMO3.0

EPA SAMPLE NO.

MW04D Lab Name: QUANTERRA, INC. Contract: Lab Code: QESOH Case No.: SAS No.: SDG No.: L15229 Lab Sample ID: D6D7P101 Matrix: (soil/water) WATER Sample wt/vol: 5.000 (g/ML) ML Lab File ID: VOL6494 LOW Date Received: 12/15/99 Level: (low/med) % Moisture: not dec. Date Analyzed: 12/22/99 ID: 0.53 (mm) Dilution Factor: 1.0 GC Column: DB624 Soil Extract Volume: (uL) Soil Aliquot Volume: ____ (uL CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 10 U 74-87-3-----Chloromethane 74-83-9-----Bromomethane 10 U 75-01-4------Vinyl Chloride 10 0 UJ.C 75-00-3-----Chloroethane 10 U 75-09-2-----Methylene Chloride 10 U 67-64-1-----Acetone 10U-UJ,ZC 10 ប្រ 🥨 75-15-0------Carbon Disulfide 75-35-4-----1,1-Dichloroethene 10 0 10 U 75-34-3-----1,1-Dichloroethane 10 U 540-59-0----1,2-Dichloroethene (total) 67-66-3-----Chloroform 107-06-2-----1,2-Dichloroethane 78-93-3-----2-Butanone 10 U UT, C 10 U 71-55-6-----1,1,1-Trichloroethane_ 10 U

10 U 56-23-5-----Carbon Tetrachloride 10 75-27-4-----Bromodichloromethane 10 U 78-87-5-----1,2-Dichloropropane 10061-01-5----cis-1,3-Dichloropropene 10 U 79-01-6-----Trichloroethene 10 U 10 U 124-48-1-----Dibromochloromethane 10 U 79-00-5-----1,1,2-Trichloroethane 10 U 71-43-2-----Benzene 10061-02-6----trans-1,3-Dichloropropene 10 U 10 U 75-25-2-----Bromoform_ 108-10-1----4-Methyl-2-pentanone 10 U UJ,C 591-78-6----2-Hexanone 10 U 127-18-4-----Tetrachloroethene 10 U 79-34-5-----1,1,2,2-Tetrachloroethane_ 10 U 108-88-3-----Toluene 108-90-7-----Chlorobenzene 10 U 10 U

FORM I VOA

OLM03.0

10 U

10 U

100-41-4------Ethylbenzene

1330-20-7-----Xylenes (total)

100-42-5-----Styrene

EPA SAMPLE NO.

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7P101

Sample wt/vol:

5.000 (g/ML) ML

Lab File ID:

VOL6494

Level: (low/med) LOW

Date Received: 12/15/99

% Moisture: not dec. _____

Date Analyzed: 12/22/99

GC Column: DB624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

CONCENTRATION UNITS:

Soil Aliquot Volume: ____(uL

Number TICs found: 1

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 556-67-2 2. 3. 4.	CYCLOTETRASILOXANE, OCTAMETH	16.02	6	₩ ₩
5. 6. 7. 8.				
10. 11. 12. 13.				
14. 15. 16. 17.				
19. 20. 21. 22.				
23. 24. 25. 26.				
27. 28. 29. 30.				

FORM I VOA-TIC

OLMO3.0

EPA SAMPLE NO.

Lab Name: QUANTERRA,	TNC	Contract		MW04S	
_					I
Lab Code: QESOH	Case No.:	SAS No.:	SDG No.:	L15229	
Matrix: (soil/water)	WATER	Lab Samp	ole ID: D6D	7M101	•
Sample wt/vol:	5.000 (g/ML) MI	Lab File	D: VOL	5493	
Level: (low/med)	LOW	Date Red	ceived: 12/3	15/99	
<pre>% Moisture: not dec.</pre>	,	Date Ana	alyzed: 12/2	22/99	
GC Column: DB624	ID: 0.53 (mm)	Dilution	Factor: 1.	. 0	
Soil Extract Volume:	(uL)	Soil Ali	iquot Volume	e:	(uL
CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/Kg		Q	
74-83-9 75-01-4 75-00-3 75-09-2 67-64-1 75-35-4 75-34-3 540-59-0 67-66-3 78-93-3 78-93-3 75-27-4 78-87-5 79-01-6 108-10-1 108-10-1 108-88-3 108-90-7	Carbon Disulf1,1-Dichloroe1,2-Dichloroe1,2-Dichloroe1,2-Dichloroe2-Butanone1,1-TrichloroeBromodichloroe1,2-Dichloroe	de d	10 U 10 10 10 10 10 10 10 10 10 10 10 10 10	ממממממממממממממממממממממ	W,zc W,zc

FORM I VOA

EPA SAMPLE NO.

MW04S	

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7M101

Sample wt/vol: 5.000 (g/ML) ML

Lab File ID: VOL6493

Level: (low/med) LOW

Date Received: 12/15/99

% Moisture: not dec. _____

Number TICs found: 1

Date Analyzed: 12/22/99

GC Column: DB624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

COMPOUND NAME CAS NUMBER RTEST. CONC. _____ ***** 1. 556-67-2 CYCLOTETRASILOXANE, OCTAMETH No 2._ 10. 11._ 12._ 13._ 14. 15. 17._ 18. 19. 20. 21. 22. 23. 24. 25. 26. 27._ 28._ 29._ 30.

FORM I VOA-TIC

EPA SAMPLE NO.

Lab Name: QUANTERRA, INC.	Contract: MW07D	
Lab Code: QESOH Case No.:	SAS No.: SDG No.: L15229	
Matrix: (soil/water) WATER	Lab Sample ID: D6D7L101	
Sample wt/vol: 0.750 (g/ML) ML	Lab File ID: VOL6486	
Level: (low/med) LOW	Date Received: 12/15/99	
% Moisture: not dec.	Date Analyzed: 12/22/99	
GC Column: DB624 ID: 0.53 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uI
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q	

74-87-3	Chloromethane	67	ש	
74-83-9	Bromomethane	67	U	
	Vinyl Chloride	67	บ	
75-00-3	Chloroethane	. 67		W.L
	Methylene Chloride	67	_	1
67-64-1	Acetone	67	_	UT.C
	Carbon Disulfide	67	_	
75-35-4	1,1-Dichloroethene	67		-
75-34-3	1,1-Dichloroethane	67	_	
540 50 0	1,2-Dichloroethene (total)_	67		ľ
540-59-0	Chloroform	67		j
		67	_	
107-06-2	1,2-Dichloroethane			15,C
	2-Butanone	67	-	<i>1</i> 25, C
	1,1,1-Trichloroethane	67	u]
	Carbon Tetrachloride	110		
	Bromodichloromethane	67		[
	1,2-Dichloropropane	67]
	cis-1,3-Dichloropropene	67	Ŭ	j
	Trichloroethene	1100		}
124-48-1	Dibromochloromethane	[67)
79-00-5	1,1,2-Trichloroethane	67		1
71-43-2	Benzene	67	U	1
	trans-1,3-Dichloropropene	67	U	
	Bromoform	67	U	1
	4-Methyl-2-pentanone	67	U	
	2-Hexanone	67		UJ,C
	Tetrachloroethene	67		J. –
	1,1,2,2-Tetrachloroethane	67	-	l
108-88-3		67		
	Chlorobenzene	67	, –	1
		67		1
	Ethylbenzene	67		(
100-42-5		67	, -	1
1 1330-20-7	Xylenes (total)	1 67	U	1

FORM I VOA

EPA	SAMPLE	NO.
	MW07D	•

Lab Name: QUANT	ERRA, INC.
-----------------	------------

Contract:

Lab Code: QESOH

Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7L101

Sample wt/vol:

0.750 (g/ML) ML

LOW

Lab File ID:

VOL6486

Level: (low/med)

Date Received: 12/15/99

% Moisture: not dec. _____

Date Analyzed: 12/22/99

GC Column: DB624

ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 1

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	. ~ .
1.	UNKNOWN	19.50	68	J -===
2. 3.				
5.				
6.				
8.				
10				
11.				
13			<u> </u>	
13.	_ [
16. 17.				
19.				
20.				
22. 23.				
24.				
26.				
28.				
29. 30.				
				ll

Q: TIC

FORM I VOA-TIC

EPA SAMPLE NO.

MW07S

Lab Name: QUANTERRA, INC	Contrac	t:	
Lab Code: QESOH Case	No.: SAS No	.: SDG	No.: L15229
Matrix: (soil/water) WAT	TER	Lab Sample ID:	D6D7K101
Sample wt/vol: 5.0	000 (g/ML) ML	Lab File ID:	VOL6492
Level: (low/med) LOW	·	Date Received:	12/15/99
% Moisture: not dec.	· ·	Date Analyzed:	12/22/99

GC Column: DB624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L Q

10 U 74-87-3-----Chloromethane 10 U 74-83-9-----Bromomethane 75-01-4-----Vinyl Chloride 10 U UJ,C 10 U 75-00-3-----Chloroethane 75-09-2-----Methylene Chloride 10 U 10 U 5 0 67-64-1-----Acetone UJ.ZC 75-15-0------Carbon Disulfide 75-35-4-----1,1-Dichloroethene 10 U 10 0 75-34-3-----1,1-Dichloroethane 540-59-0-----1,2-Dichloroethene (total) 10 U 10 U 67-66-3-----Chloroform 107-06-2----1,2-Dichloroethane 10 U 10 U UT.C 78-93-3-----2-Butanone 71-55-6-----1,1,1-Trichloroethane 10 U 10 U 56-23-5-----Carbon Tetrachloride 75-27-4-----Bromodichloromethane 10 IJ 10 U 78-87-5-----1,2-Dichloropropane_ 10061-01-5----cis-1,3-Dichloropropene 10 U 79-01-6-----Trichloroethene 10 U 124-48-1-----Dibromochloromethane 79-00-5-----1,1,2-Trichloroethane_ 10 U U 10 71-43-2----Benzene 10061-02-6----trans-1,3-Dichloropropene 10 U 75-25-2-----Bromoform 10 U 108-10-1-----4-Methyl-2-pentanone 10 U 以下, C 591-78-6----2-Hexanone 10 U 10 127-18-4-----Tetrachloroethene U 10 79-34-5-----1,1,2,2-Tetrachloroethane_ U 10 U 108-88-3-----Toluene 108-90-7-----Chlorobenzene 10 U 100-41-4-----Ethylbenzene 10 0 100-42-5-----Styrene_ 10 U 1330-20-7------Xylenes (total) 10

FORM I VOA

EPA SAMPLE NO.

MW07S	
-------	--

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7K101

Sample wt/vol: 5.000 (g/ML) ML

Date Received: 12/15/99

Level: (low/med) LOW

% Moisture: not dec.

Date Analyzed: 12/22/99

GC Column: DB624

ID: 0.53 (mm)

Dilution Factor: 1.0

Lab File ID: VOL6492

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____ (uL

Number TICs found: 1

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 556-67-2	CYCLOTETRASILOXANE, OCTAMETH		24	NO
2				_ 7 8
3				
5				
<u> </u>				
8.				
9				
10.				
12.				
13				
15				
10				
17.				
19				
20				
21.		·		
23				
24.				
25. 26.				
27.				
28.				
30				

FORM I VOA-TIC

Soil Extract Volume: (uL)

100-41-4-----Ethylbenzene 100-42-5-----Styrene

1330-20-7-----Xylenes (total)

EPA SAMPLE NO.

Soil Aliquot Volume: ____(uL

Lab Name: QUANTERRA,	INC.	Contract:	MM08D
Lab Code: QESOH	Case No.:	SAS No.: SDG	No.: L15229
Matrix: (soil/water)	WATER	Lab Sample ID:	D6D75101
Sample wt/vol:	0.600 (g/ML) ML	Lab File ID:	VOL6463
Level: (low/med)	LOW	Date Received:	12/15/99
* Moisture: not dec.		Date Analyzed:	12/21/99
GC Column: DB624	ID: 0.53 (mm)	Dilution Facto	or: 1.0

COMPOUND (ug/L or ug/Kg) UG/L 0 CAS NO. U 74-87-3-----Chloromethane 83 74-83-9-----Bromomethane 83 U 75-01-4-----Vinyl Chloride 83 U 75-00-3-----Chloroethane 83 U 83 บ 75-09-2-----Methylene Chloride 67-64-1------Acetone 83 U-Ŭ **2** 75-15-0-----Carbon Disulfide 83 75-35-4-----1,1-Dichloroethene 83 0 75-34-3-----1,1-Dichloroethane 83 U 83 U 540-59-0-----1,2-Dichloroethene (total) 25 67-66-3-----Chloroform 3088° 83 U 107-06-2-----1,2-Dichloroethane 83 U 78-93-3----2-Butanone 71-55-6-----1,1,1-Trichloroethane 83 U 1100 56-23-5-----Carbon Tetrachloride 75-27-4----Bromodichloromethane 83 ਹੋ 78-87-5-----1,2-Dichloropropane_ 83 83 | 0 10061-01-5----cis-1,3-Dichloropropene 79-01-6-----Trichloroethene 97 83 | 📆 124-48-1-----Dibromochloromethane 83 79-00-5-----1,1,2-Trichloroethane U 71-43-2-----Benzene 10061-02-6-----trans-1,3-Dichloropropene 83 U 83 U 75-25-2-----Bromoform 83 U 83 U 108-10-1-----4-Methyl-2-pentanone 収し ם 83 591-78-6-----2-Hexanone 83 127-18-4-----Tetrachloroethene 79-34-5-----1,1,2,2-Tetrachloroethane 83 U 108-88-3-----Toluene 83 U 108-90-7-----Chlorobenzene 83 U

CONCENTRATION UNITS:

FORM I VOA

OLMO3.0

83 U 83 U 83 U

BPA	SAMPLE	NO.
	MW08D	

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH

Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

0.600 (g/ML) ML

Lab Sample ID: D6D75101

Sample wt/vol:

Lab File ID: VOL6463

Level: (low/med) LOW Date Received: 12/15/99

% Moisture: not dec.

Date Analyzed: 12/21/99

GC Column: DB624

ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: (uL

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 1

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT		CONC.	Q	
1. 57103-04-5	3,6-BIS(N-DIMETHYLAMINO)-9-E		9999	48	NJ	NJ,G
3						
5						
7. 8. 9.						
10.						
12.						
15						
17.						
19. 20. 21.						
22.						
24						
26. 27. 28.						
29						

Q: TIC

FORM I VOA-TIC

EPA SAMPLE NO.

MW38D Contract: Lab Name: QUANTERRA, INC. Lab Code: OESOH Case No.: SAS No.: SDG No.: L15229 Matrix: (soil/water) WATER Lab Sample ID: D6D7F101 Sample wt/vol: 0.400 (g/ML) ML Lab File ID: VOL6466 Date Received: 12/15/99 Level: (low/med) LOW % Moisture: not dec. Date Analyzed: 12/21/99 GC Column: DB624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: _____(uL Soil Extract Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 74-87-3-----Chloromethane 120 U 74-83-9-----Bromomethane 120 U 75-01-4-----Vinyl Chloride 120 U 75-00-3-----Chloroethane 120 U 75-09-2-----Methylene Chloride 120 U 67-64-1-----Acetone 120450 J W,zc 120 0 75-15-0-----Carbon Disulfide 75-35-4-----1,1-Dichloroethene 120 U 75-34-3-----1,1-Dichloroethane
540-59-0-----1,2-Dichloroethene (total)
67-66-3------Chloroform 120 U 120 U 130

107-06-2----1,2-Dichloroethane 120 U UT,C 78-93-3-----2-Butanone 120 U 71-55-6-----1,1,1-Trichloroethane 120 U 56-23-5-----Carbon Tetrachloride 1900 120 0 75-27-4-----Bromodichloromethane 120 U 78-87-5-----1,2-Dichloropropane 10061-01-5----cis-1,3-Dichloropropene 120 U 120 U 79-01-6-----Trichloroethene 124-48-1-----Dibromochloromethane 120 U 79-00-5-----1,1,2-Trichloroethane 120 U 120 U 71-43-2----Benzene 10061-02-6----trans-1,3-Dichloropropene 120 U 75-25-2-----Bromoform 108-10-1-----4-Methyl-2-pentanone 120 U 120 591-78-6----2-Hexanone UT,C 120 127-18-4-----Tetrachloroethene 120 U 79-34-5-----1,1,2,2-Tetrachloroethane 120 U 120 U 108-88-3-----Toluene 108-90-7-----Chlorobenzene 120 U 100-41-4-----Ethylbenzene 120 U 100-42-5-----Styrene 1330-20-7------Xylenes (total) 120 U 120 U

FORM I VOA

EPA SAMPLE NO.

Lab Name: QUANTERRA, INC.

Contract:

Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Number TICs found: 1

Lab Code: QESOH

Lab Sample ID: D6D7F101

Sample wt/vol:

0.400 (g/ML) ML

Lab File ID: VOL6466

Date Analyzed: 12/21/99

Level: (low/med)

LOW

Date Received: 12/15/99

% Moisture: not dec.

ID: 0.53 (mm)

Dilution Factor: 1.0

GC Column: DB624

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 556-67-2	CYCLOTETRASILONANE, OCTAMETH	16.88	90	NJB
3.				
5. 6.				
7.				
9.				
10. 11. 12.				
13.				
15. 16.	1			
17.				
19				
21.				
24.				
26.				
27.				
29. 30.				
		1	l	l

FORM I VOA-TIC

Date : 22-DEC-1999 13:43

Client (D: DISCH-1

Instrument: a31502.i

Sample Info: DED7C101,,5HL/SHL

Purge Volume: 5.0 Column phase: DB624 Operator: 1904

Obel. 9001.1 7204

Library Search Compound Hatch

Column diameter: 0.53

Library Entry Quality Formula

Benzene, 1-phenyl-4-(2-cyano-2-phenýleth 27869-56-Cyclotetrasiloxane, octamethyl- 586-67-2

27869-56-3 NBS75K.1 556-67-2 NBS75K.1 39643 419**6**6 47 C21H15H 281 36 C8H24O4914 296

Date : 21-DEC-1999 13:25

Client 10: 184060

Instrument: a31502.i

Sample Info: 36876101,,0,6HL/5HL

Purge Volume: 0.6

Operator: 1904

Calumn phase: 33624

Column diameter: 0.53

Library Search Compound Hatch	CAS Number	Library	Entry	Quality	Formula	Weight
3,6-Bis(N-dimethylamino)-9-ethylcarbazol	57103-04-5	MBS75K.1	39624	50	CT8H53H3	281
Benzene, 1-phenyl-4-(2-cyano-2-phenyleth	27869-56-3	NBS75K.1	39643	50	CSTHT2H	281
Cyclotetrasiloxane, octamethyl-	556 -6 7-2	HB975K.1	41966	45	C8H24O4S14	296

Date : 21-DEC-1999 14:34

Client (ID: HM370

Instrument: a3i502.i

Sample info: B6800.01, 2HL SHL

Purge Volume: 2.0

Operator: 1904

Column phase: DB624

Column diameter: 0.83

Library Search Compound Match	CAS Humber	Library	Entry	Quality	Formula	Weight
Benzene, 1-phenyl-4-(2-oyano-2-phenyleth	2786 9- 56-3	HBS75K.1	39643	50	C21H1EN	281
Cyclotetrasiloxane, octamethyl-	55 6- 67-2	HBS75K.1	41966	39	C8H24O4S14	296

one example.

Data File: /chem/can/msv/a2/1502.i/L91221A-CLP.b/VOL6464.d

Date : 21-DEC-1999_15:52

Client (D: HMO85

Sample Info: DEDGR101,,0.78HL/5HL

Purge Volumet 0.8

Operator: 1904

Instrument: a3i502.i

Column phase: DB624

Column diameter: 0.53

Library Search Compound Match

Entry

Cyclotetrasiloxame, octamethyl-

Benzene, 1-phenyl-4-(2-cyano-2-phenyleth

NBS75K.1 27869-56-3 HBS76K.1 41966 39643 C8H24O4S14 C21H15N

296 281

Page 10

Table 1: Data Qualifying Codes

Two types of data qualifying codes or flags are applied in the course of the data review. The data validation flags indicate data that are not usable for decision making, more than normally biased and/or variable, or not representative of field conditions. These codes and their definitions are presented below in the hierarchy stipulated in the USEPA National Functional Guidelines for Data Review (September 1994).

Data Validation Flags

Flag	Interpretation
	"我们们是我们的一个人,我们们就是一个人,我们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
N	The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification."
נא	The analyte indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
υ	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Table 2: Reason Codes

The other type of code used by Dames & Moore is a "Reason Code". The reason code indicates the type of quality control failure that lead to the application of the data validation flag.

GC/MS Organics		GC and HPLC Organics		Inorgar	nics and Conventionals
Code	Interpretation	Code	Interpretation	Code	Interpretation
A	Incorrect or incomplete analytical sequence	a	Incorrect or incomplete analytical sequence	a	Incorrect or incomplete analytical sequence
С	Calibration failure; poor or unstable response	ь	Instrument performance failure	С	Calibration failure
D	MS/MSD imprecision	С	Calibration failure; poor or unstable response	d	MS/MSD imprecision
E	LCSD imprecision	d	MS/MSD imprecision	е	LCSD imprecision
F	Field duplicate imprecision	e	LCSD imprecision	f	Field duplicate imprecision
н	Holding time violation	f	Field duplicate imprecision	h	Holding time violation
ı	Internal standard failure	g	Dual column confirmation imprecision	k	Laboratory duplicate imprecision
J	Poor mass spectrometer performance	h	Holding time violation	ı	LCS recovery failure
L	LCS recovery failure	i	Internal standard failure	m	MS/MSD recovery failure
М	MS/MSD recovery failure	1	LCS recovery failure	n	ICS failure
Р	Poor chromatography	m	MS/MSD recovery failure	o	Calibration blank contamination
R	linearity failure in initial calibration	р	Poor chromatography	p	Preparation blank contamination
s	Surrogate failure	r	linearity failure in initial calibration	r	Linearity failure in calibration or MSA
Т	Tuning failure	s	Surrogate failure	s	Scrial dilution failure
w	Identification criteria failure	u	No confirmation column	v	Post-digestion spike failure
х	Field blank contamination	w	Retention time failure	x	Field blank contamination
Υ	Trip blank contamination	x	Field blank contamination	Z	Laboratory storage blank contamination
Z	Method blank contamination	z	Method blank contamination	Q	Other - see bottom of data report for explanation
Q	Other - see bottom of data report for explanation	Q	Other - see bottom of data report for explanation		
K	Tentatively Identified Compounds (TICs)				

EPA SAMPLE NO.

MW38DDUP

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7H101

Sample wt/vol: 0.350 (g/ML) ML

Lab File ID: VOL6485

Date Received: 12/15/99

Level: (low/med) LOW

% Moisture: not dec. _____

Date Analyzed: 12/22/99

GC Column: DB624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL

Soil Extract Volume: (uL)

CONCENTRATION UNITS:

	1
74-87-3	UJ, C UJ, C
127-18-4Tetrachloroethene	

FORM I VOA

MW38DDUP	

EPA SAMPLE NO.

Lab	Name:	QUANTERRA,	INC.
-----	-------	------------	------

Contract:

Lab Code: QBSOH

Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7H101

Sample wt/vol:

0.350 (g/ML) ML

Lab File ID:

VOL6485

Level: (low/med)

LOW

Date Received: 12/15/99

% Moisture: not dec.

Date Analyzed: 12/22/99

GC Column: DB624

ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: _____(uL

Soil Extract Volume: (uL)

CONCENTRATION UNITS:

Number TICs found: 0

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1:				
4.				
5. 6.				
7				
10.				
13:				
15:				
17.				
18. 19. 20.				
22:				
24.				
25.				
27. 28. 29.				
30				

FORM I VOA-TIC

Case No.:

Lab Name: QUANTERRA, INC.

Matrix: (soil/water) WATER

Lab Code: QESOH

Sample wt/vol:

Level:

EPA SAMPLE NO.

Contract:

SAS No.:

SDG No.: L15229

Lab Sample ID: D6DC9101

Lab File ID: VOL6472

t/vol: 5.000 (g/ML) ML Lab File ID: VOL6472 (low/med) LOW Date Received: 12/15/99

% Moisture: not dec. Date Analyzed: 12/21/99

GC Column: DB624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: Q CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 74-87-3-----Chloromethane 10 U 74-83-9-----Bromomethane 10 U 10 U 75-01-4-----Vinyl Chloride 10 U 75-00-3-----Chloroethane 10 U 75-09-2-----Methylene Chloride 10 U D 4T,ZC 10U-7 67-64-1-----Acetone 75-15-0-----Carbon Disulfide 10 U 75-35-4-----1,1-Dichloroethene 75-34-3-----1,1-Dichloroethane
540-59-0-----1,2-Dichloroethene (total) 10 U 10 U 10 U 67-66-3-----Chloroform 107-06-2----1,2-Dichloroethane 10 U UJ.C 10 U 78-93-3-----2-Butanone 10 U 71-55-6-----1,1,1-Trichloroethane_ 10 U 10 U 10 U 56-23-5-----Carbon Tetrachloride_ 75-27-4-----Bromodichloromethane 78-87-5-----1,2-Dichloropropane
10061-01-5----cis-1,3-Dichloropropene 10 U 10 0 79-01-6-----Trichloroethene 10 U 124-48-1-----Dibromochloromethane 10 U 79-00-5-----1,1,2-Trichloroethane 71-43-2-----Benzene 10061-02-6----trans-1,3-Dichloropropene 10 U 10 U 75-25-2-----Bromoform 10 U 108-10-1----4-Methyl-2-pentanone UJ.C 10 U 591-78-6-----2-Hexanone 127-18-4-----Tetrachloroethene
79-34-5-----1,1,2,2-Tetrachloroethane 10 U 10 0 108-88-3-----Toluene 10 U 10 U 108-90-7-----Chlorobenzene 10 0 100-41-4-----Ethylbenzene 100-42-5-----Styrene_ 10 U 10 U 1330-20-7-----Xylenes (total)

FORM I VOA

BPA SAMPLE NO.

TRPBLK

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH

Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6DC9101

Sample wt/vol: 5.000 (g/ML) ML

Lab File ID: VOL6472

Level: (low/med) LOW Date Received: 12/15/99

Date Analyzed: 12/21/99

% Moisture: not dec.

GC Column: DB624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL

Soil Extract Volume: (uL)

CONCENTRATION UNITS:

Number TICs found: 0

(ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1 2:				
4.				
5. 6. 7.				
9:				
10.				
14.				
15. 16. 17.				
19:				
20.				
24.				
25. 26. 27.				
29.				
30				

FORM I VOA-TIC

DATA VALIDATION WORKSHEET VOLATILE ORGANIC ANALYSIS - NFG (February 1994)

Review	/er:				Project Name			ect.
Date: _	기내00	-			Project Number SDG No.		0-00	3-700
1.0 Ch	nain of Custody/Sam	ple Condition			<i>55</i> 3 No.	· <u> </u>	No No	NA NA
1.1	Do Chain-of-Custo	ndy forme list all sampl	les which were analyzed?	-	•	1 es	NO	NA
		•	•		ado			
1.2	Do the traffic Repo	orts, chain-of-custody, a	ndicating sample chain-of and lab narrative indicate ircumstances affecting the	any problems with sam		1-1	1/1	
1.4	• •	•	torage condition meet met a melted upon arrival at th		emperature of the cooler			
		for a sample have air b	tive results with a "J" and ubbles or the VOA vial ar		, flag all positive results		/	/
1.5	If any sample ana	•	0% water? than TCLP, contains 50% n TCLP contains more th				<u> </u>	
Note:		Cooler temp 7	poc Styptly	176°C) N.				
2.0 Ha	olding Time	 						
	Have any technica		mined from sampling to c	date of analysis, been c	exceeded? (See attached	Yes	No	NA
2.1	Holding Time Tab	le for sample holding t	(100) 11 yes, $J(\top)/UJ(-)$.				1 7 1	
2.1		le for sample holding t Preserved	Aromatic	All others			1 1	
2.1	Holding Time Tab			All others 14 days		*******	1 7 1	

4.0 Bia	nks (Method Blan	ks, Field Blanks and Trip Bla	nks)	·	Yes	No N	A
4.1		Summary form present for each batch (medium level soil)?	h matrix, each GC/MS system	n used to analyze volatile samples			
4.2	Has a VOA method	blank been analyzed at least o	once every 12 hours for each	GC/MS instrument used?	īVi		
4.3	Has a method blank	•	•	of similar matrix, (water, low soil	,		
4.4	· ·	raphic performance (baseline s	tability) acceptable for each	instrument?	(V)		
4.5	_	strument/reagent blanks have	* *	or TIC) for VOAs? (If Yes, see		1	
4.6	Do any field/trip r Blank Summary Ta	· ·	ositive VOA results (TCL, a	nd/or TIC)? (If Yes, see attached	<u> </u>	<u> </u>	
4.7	Are there field/trip	/rinse/equipment blanks associa	ated with every sample?				
	Qualification	U	U at CRQL	None	VBLK	2	•
	CH ₂ Cl ₂ , Acetone	Sample Conc. is > CRQL,	Sample Conc. is < CRQL	. Sample Conc. is > CRQL	Hena)	nethyl-	cyclotra-
	2-Butanone	but < 10 X blank value.	and < 10 X blank value.	and > 10 X blank value.	sidu		(6 ug/2)
	Other	Sample Conc. is > CRQL,	Sample Conc. is < CRQI	Sample Conc. is > CRQL	Octam	rethyl- c	ydo-tetru
	Contaminants	but $< 5 \times 10^{-5}$ x blank value.	and $< 5 x$ blank value.	and $> 5 x$ blank value.	ક્રમ	rodue	(10 mg)
Note:	TripBlank Acomo 7	782 44 () Destruce 949/	VHBI	kl Ime 9 ug/c	VBLK3	- AU	AID.
	C/MS Initial Calibra	Mayau	2004	2 8 49/L U	Yes	No N	IA
5.1		ation summary forms, reconst sent and complete for each inst		(RIC), and data system printouts	s 1 V1		
5.2	Are the Initial Cali calibrations of low	bration forms present and comp water/med. Soil (unheated pur	elete at concentrations of 10, ge) and low soils (heated pur				·
5.2		mples were not heated during p					
5.3	Are response facto	r stable (%RSD values < 30%) 30% < %RSD < 50%	for VOC over the concentral 50% < %RSD < 90%	ion range of the calibration? %RSD > 90%	[V] _		
	Positive	J(+)	J(+)	J(+)			
	Non-detect	None	UJ(-)	R(-)			

EPA SAMPLE NO.

	VBLK2	
·		

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH

Case No.: SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6WLP101

Sample wt/vol: 5.000 (g/ML) ML

Lab File ID: VOL6457

Level: (low/med) LOW

Date Received: _____

Date Analyzed: 12/21/99

% Moisture: not dec.

GC Column: DB624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL

Number TICs found: 2

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 541-05-9 2. 556-67-2 3.	CYCLOTRISILOXANE, HEXAMETHYL CYCLOTETRASILOXANE, OCTAMETH	12.91	6 10	NJ
4 5				
7. 8. 9.				
10. 11. 12.				
14. 15. 16.				
17. 18.				
20. 21. 22. 23.				
25. 26.				
27. 28. 29.				
30				

FORM I VOA-TIC

EPA SAMPLE NO.

 VH	3LR	(1	

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH Case No.: SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7Q101

Sample wt/vol:

5.000 (g/ML) ML

LOW

CAS NO. COMPOUND

Lab File ID: VOL6471

Level: (low/med)

Date Received: 12/15/99

% Moisture: not dec. _____

Date Analyzed: 12/21/99

GC Column: DB624 ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Q

74-97-3	Chloromethane	10	ប
	Bromomethane	iol	บ
	Vinyl Chloride	101	U
75-00-3		īol	
	Methylene Chloride	101	
67-64-1	-Agerone Childride	9	T
	Carbon Disulfide		-
	1,1-Dichloroethene	, –-,	ប័
	1,1-Dichloroethane	10	_
	1,2-Dichloroethene (total)	,	ប៊
			Ü
	Chloroform		นี
107-06-2	1,2-Dichloroethane	10	
	2-Butanone		Ü
	1,1,1-Trichloroethane	,	
	Carbon Tetrachloride	10	_
	Bromodichloromethane	1	U
78-87-5	1,2-Dichloropropane		U
	cis-1,3-Dichloropropene	10	_
	Trichloroethene	10	_
	Dibromochloromethane	10	
79-00-5	1,1,2-Trichloroethane	10	
71-43-2		10	_
10061-02-6	trans-1,3-Dichloropropene] 10]	. –
75-25-2	Bromoform	10	_
108-10-1	4-Methyl-2-pentanone	10	U
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
108-88-3	Toluene	10	U
108-90-7	Chlorobenzene	10	U
	Ethylbenzene	10	
100-42-5		Ī	Ū
	Xylenes (total)	10	Ū
1330-40-7	Wirmes (cocar)		-

FORM I VOA

BPA	SAMPLE	NO.				
VHBLK1						

Lab	Name:	QUANTERRA,	INC.
-----	-------	------------	------

Contract:

Lab Code: QESOH

Case No.:

SAS No.:

SDG No.: L15229

Matrix: (soil/water) WATER

Lab Sample ID: D6D7Q101

Sample wt/vol:

5.000 (g/ML) ML

Lab File ID: VOL6471

Level:

Date Received: 12/15/99

% Moisture: not dec. _

LOW (low/med)

Date Analyzed: 12/21/99

GC Column: DB624

ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 1

CAS NUMBER	COMPOUND NAME	RT	EST. CONC	2
1. 556-67-2	CYCLOTETRASILOXANE, OCTAMETH	16.85	8	NJB
3				
4				
6				
7				
·				
.0				
Ll.				
.3				
L4.				
15.				
L6.				
LQ.				
LJ.				
20.				
22				
23 24.	.}	·		
25	·			
26				
61.			}	
28. 29.				
30				
	•	1	ì	1 1

FORM I VOA-TIC

JUF	# VOC-INFG						,
.0 Lai	boratory Control	Sample (LCS)					
					•	Yes No	NA
9.1		ery form present?				 	_
9.2		at the required frequency				1 1 -	L
9.3		s within acceptance criteria					V -
9.4		R (and RPD) values mark	~	sterisk?		<u> </u>	- -/ -
9.5	Were any calcula	ation/transcription errors for		•		{	1 1
		> UCL	< LCL				
	Positive	J	j	,			
	Non-detect	None	R	•			
Note:							
10 Y_4						•	
iv. int	ernal Standards					Yes No	NA.
10.1	. Ano intornal star	ndand af awan,	1d blamb	and lawer OC limit	a far agah gantinging	res No	n n n
10.1	calibration?	ndard area of every samp	ie and blank within t	ipper and lower QC timil	s for each continuing		
	Canbration	Area > 100%	Area < -50%			1 7 1	
	Positive	AICa > 10076	Aica > -30%)			
	Non-detect	None	UJ				
				· · · · · · · · · · · · · · · · · · ·	: 4b		
	•	area counts are reported,	•				
10.2	•	icated. Non-detect target ones of internal standards w	•	•	• •	/	
10.2						1 01	
		romatographic profile for For shift of a large magnit	•		•	•	
	that sample fract	tion. Positive results should	ld not need to be quali	fied as "R" if the mass spe	ctral criteria are met.		
10.3		s (internal standard areas a	nd/or retention times)	marked correctly with an	asterisk?	$\overline{(V)}$	<i>_</i>
10.4	Were any transc	ription errors found?				11/	<u></u>
Note:							
MOIG:	<u> </u>				·		

11.0 TCL Identification

		Yes	No	NA	
11.1	Are Analysis Data Sheet (Form I) present with required header information on each page, for the following:				
	11.1.1 Samples and/or fractions as appropriate	1.1			
	11.1.2 Matrix Spike and Matrix Spike Duplicate	111			
	11.1.3 Blanks	1,2	·		
11.2	Are VOA RIC, mass spectra for identified compounds, and Quant Reports included in the sample package for the	<i>V</i>			
	following:	Yes	No	NA	
	11.2.1 Samples and/or fractions as appropriate	11/			
	11.2.2 Matrix Spike and Matrix Spike Duplicate	1/			
	11.2.3 Blanks	1 1			•
11.3	Is the relative retention time (RRT) of each reported compound within 0.06 RRT units of the standard RRT in the continuing calibration?	11/			
11.4	Are all ions present in the standard mass spectrum, at a relative intensity greater than 10%, also present in the		1		
	sample mass spectrum; and do sample and standard relative ion intensities agree within 20%?	[.]	<u> </u>		•
Note:	Sample DISCH-1 TIC (1-phemyl-4-17-cyano-8-phemyle + & onyl ben	zene).	-> 7	this	ne
	was identified as A tomethal cyclotetrasilorane				
		40	1	10	attal
12.0 Te	CL/TIC Quantitation and Reported Detection limits Sample MWOSD (3.6-Bis (N-dim	retuzi	ann	4/7-	
		Yes	No	NA	Carbazole.
12.1	Are there any transcription/calculation errors in reported sample results? (verify that the correct internal standard, quantitation ion, and RRF were used to calculate Form I results.)		1/1	•	
12.2	Are Contract Required Quantitation Limits (CRQL) adjusted to reflect sample dilution(s) and, for soil, sample				
	moisture?	1/1			
Note:	MWOTD - Diluted by a factor 6.7 -> TCE 1100. W/L				
	MW180 Diluted by a factor 8.3 - CClet 1100. 4/4.				
13.0 To	MW38DOUP - Distuted by a fullwof 14 -> CCl4 entatively Identified Compounds (TIC)				
		Yes	No	NA	
13.1	Are all TIC summary forms present; and do listed TIC include scan number or retention time, estimated				
	concentration and "NJ" qualifier?	IVI			
Dam	nes Moore Page 7		A	QuA DV	Service

5.4 Do any compounds have an RRF < 0.05? If yes, J(+)/R(-).

Yes No NA

Note: The criteria employed for technical data review purposes are different from those used in the method. The laboratory must meet a minimum RRF criterion of 0.01, however, for data review purposes, the "greater than or equal to 0.05" criterion is applied to all volatile compounds.

5.5 Are there any transcription/calculation errors in reporting of RRF or %RSD values? (see attached calculation worksheet)

Note:

Instrument: A3 ISOZ 12/9/99 1353-1554

6.0 Continuing Calibration

Are Continuing Calibration summary forms, reconstructed Ion Chromatograms (RIC), and data system printouts (Quant Report) present and complete for each instrument used?

NA

6.2 Has a continuing calibration standard been analyzed for every 12 hours of sample analysis per instrument?

Do any compounds have a % difference (%D) values between initial and continuing calibration RRF outside QC limits (%D < 25%)? If yes, J(+)/UJ(-).
Do any continuing calibration standard compounds have a RRF < 0.05? If yes, J(+)/R(-).

6.5 Are there any transcription/calculation errors in reporting of RRF or %D values?

Tushument: A3I50Z

Mata

2-brotanone · 32.9%
2-Hexamone · 32.9%

VBIKZ

LW080

MW38D

VHBLKI

TRPBLK

TAZZ

VBLK3
MW3800mp
MW17D

DISCH-1
DISCH-10mp

@ chloroethane RRF = 7876# = 1.353

7-Heranone

 $%D = \frac{1.004 - 1.333}{1.004} = -32.92$

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH Case No.: SAS No.: SDG No.: L15229

Instrument ID: A3I502 Calibration Date: 12/21/99 Time: 0905

Heated Purge: (Y/N) N Init. Calib. Times: 1353 1554

GC Column: DB624 ID: 0.53 (mm)

COMPOUND	RRF	DDDEO	MIN	0.5	MAX
		RRF50	RRF	%D	%D
Chloromethane	0 046	0.00			
	1 617	1.427	0 100	-2./	25 0
Vinyl Chloride	1.163	1.110	0.100	11.0	25.0
Chloroethane	1.103		0.100	-23.8	25.0
Methylene Chloride	1.593		1		1
Acetone	0.576			39.9	
Carbon Disulfide	4.620	4.930		39.3	
1,1-Dichloroethene	1.570	1 620	0.100	-3.2	25.0
1,1-Dichloroethane	3.441	3.460		1 -0.2	25.0
1,2-Dichloroethene (total)	1.600			-1.3	23.0
Chloroform	4.397		0.200	3 0	25.0
1,2-Dichloroethane	3.596	3 873	0.100	1 -7 7	25.0
2-Butanone	0.629		0.100	(32.9)	523.0
1,1,1-Trichloroethane	0.999		0.100	ا ستقنظ	25.0
Carbon Tetrachloride	0.938		0.100		25.0
Bromodichloromethane	1.154		0.200	2.2	25.0
	0.469	0.439		6.4	
cis-1,3-Dichloropropene	0.755	0.700	0.200	7.3	25.0
Trichloroethene	0.569		0.300	5.1	25.0
Trichloroethene Dibromochloromethane	0.920		0.100	1.1	25.0
1,1,2-Trichloroethane	0.407	0.387	0.100	4.9	25.0
Benzene	0.985	0.947	0.500	3.8	25.0 25.0
trans-1,3-Dichloropropene	0.727		0.100	2.6	25.0
Bromoform	0.700		0.100	8.4	25.0
4-Methyl-2-pentanone	0.360	0.270		25.0	
2-Hexanone	0.299	0.194		35.1	
Tetrachloroethene	0.492		0.200	1.6	25.0
1,1,2,2-Tetrachloroethane		0.444			
Toluene	1.244		0.400	9.2	25.0
Chlorobenzene	1.037		0.500	4.0	25.0
Echylbenzene	0.455		0.100	3.1	25.0
	1.044		0.300	$\begin{bmatrix} 9.3 \end{bmatrix}$	25.0 25.0
Xylenes (total)	0.599		0.300		
	======	35555			====
Toluene-d8	1.117	1.009		9.7	
Bromofluorobenzene		1.014	0.200	10.6	25.0
1,2-Dichloroethane-d4	3.109	3.267		-5.1	
311 25 22 22 22 22 22		·	<u></u>	\ !	

All other compounds must meet a minimum RRF of 0.010.

FORM VII VOA

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: QUANTERRA, INC.

Contract:

Lab Code: QESOH Case No.:

SAS No.: SDG No.: L15229

Instrument ID: A3I502 Calibration Date: 12/22/99 Time: 0923

Heated Purge: (Y/N) N Init. Calib. Times: 1353 1554

GC Column: DB624 ID: 0.53 (mm)

·			MIN		MAX
COMPOUND	RRF	RRF50	RRF	%D	%D
		****	22220	*****	====
Chloromethane	0.846	0.885		-4.6	
Bromomethane	1.617	1.482	0.100	8.3	25.0
Bromomethane Vinyl Chloride	1.163	1.126	0.100	-3-2	25.0
	1.004	1.333		32.8	
Chloroethane Methylene Chloride	1.593			8.8	
Acetone	0.576	0.307		8.8	
Carbon Disulfide	4.620	4 944		-4 8	
1,1-Dichloroethene	1.570	1.593	0.100	-1.5	25.0
1.1-Dichloroethane	3.441	3.487	0.200	1 -1.3	25.0
1,2-Dichloroethene (total)_	1.600	1.595		0.3	
Chloroform	4.397	4.564	0.200	-3.8	25.0
1,2-Dichloroethane	3.596			-10.2	25.0
2-Butanone	0.629	0.423		(32.8)	•
1,1,1-Trichloroethane	0.999	1.071	0.100	-7.2 -12.6	25.0
Carbon Tetrachloride	0.938	1.056	0.100	-12.6	125.0
BromodichLoromethane	1.154			-3.9	25.0
li 3-Dichlerenronana	0.469	0.458		2.3	
cis-1,3-Dichloropropene	0.755	0.712	0.200	5.7	25.0
Trichloroethene	0.569	0.565	0.300	0.7	25.0
Dibromochloromethane	0.920	0.930	0.100	-1.1	25.0
1,1,2-Trichloroethane	0.407		0.100		25.0
Benzene	0.985	0.973		1.2	25.0
trans-1,3-Dichloropropene	0.727	0.734	0.100	-1.0	25.0
Bromoform 4-Methyl-2-pentanone	0.700	0.680 0.285 0.204	0.100	2.8	25.0
4-Methyl-2-pentanone	0.360	0.285	}	20.8	
2-Hexanone	0.299	0.204		31.8	
Tetrachloroethene	0.492	0.473	0.200	3.9	25.0
1,1,2,2-Tetrachloroethane	0.559	0.422	0.300	24.5	25.0 25.0
Toluene	1.244		0.400	9.6	25.0
Chlorobenzene		0.994	0.500	4-1	25.0
Bury then zene		0.442		4.8	25.0
Styrene	1.044	0.964		1 4.7	25.0 25.0
Xylenes (total)	0.599				
b contract the contract contract to the contract		0.994		11.0	
Toluene-d8	1 1 1 1 1	1 051	0 200	7.0	25.0
Bromofluorobenzene	1 1.134	1.051	0.200	-7.0	23.0
1,2-Dichloroethane-d4	3.109	3.328	}	-/.0	
All other compounds must me	<u> </u>	1	<u> </u>	<u> </u>	

All other compounds must meet a minimum RRF of 0.010.

FORM VII VOA

OLMO3.0

7.0 Surrogate Recovery

7.1	Are all VOA sam	ples listed on the appr	opriate Surrogate Recovery Sun	nmary Form ?	IVV		
7.2	Are surrogate recoveries within acceptance criteria for all samples and method blanks?			IVI			
7.3	If No in Section 7.2, are these sample(s) or method blank(s) reanalyzed?			1 1		l	
	Note: If medium reanalyzed first to	n level soil field samp o determine if there is	le or method blanks do not me	et acceptable criteria, the extract must be reanalysis of the extract does not solve the			
					Yes	No	NA
.4				rrogate recoveries may be diluted out.)	[]		V
	Note: If SMC r	ecoveries do not mee	t acceptable criteria for SMCs	in samples chosen for the MS/MSD and		•	
	diluted samples,	then no reanalysis is re	equired.				
		> UCL	10% to LCL	< 10%			
	Positive	J	. J	J			
	Non-detect .	None	UJ	R	/		
					IVI		
.5	Were outliers ma	arked correctly with an	asterisk?	•	<u> </u>		
7.6		ription/calculation erro	asterisk? rs found between the raw data a	-		<u>[V]</u>	
7.5 7.6 lote:	Were any transcr	ription/calculation erro	rs found between the raw data a	-		<u>(V)</u>	
7.6 ote:	Were any transcr	ription/calculation erro	rs found between the raw data a	-	Yes	(V)	NA NA
7.6 ote:	Were any transcr	ription/calculation erro	rs found between the raw data a	-	Yes	No	NA
7.6 ote: Ma	Were any transcr atrix Spike/Matri	x Spike Duplicate (Me/Matrix Spike Duplicate	s/MSD) ate recovery form present?	-	Yes [No	NA .
7.6 ote: Ma 8.1 8.2	were any transcr atrix Spike/Matri ls a Matrix Spike Are MS/MSDs a	x Spike Duplicate (Me/Matrix Spike Duplicate analyzed at the required	S/MSD) ate recovery form present?	-	Yes [V]	No No	NA ·
7.6 ote: Ma 3.1	Is a Matrix Spike Are MS/MSDs a Are all MS/MSD No action is tak may use the M	x Spike Duplicate (Me/Matrix Spike Duplicate analyzed at the required 9%Rs and RPDs withing an on MS/MSD data as and MSD results in	S/MSD) ate recovery form present? If frequency for each matrix? In acceptance criteria? alone. However, using informed	-	Yes [No .	NA ·
7.6 ote: Ma	Is a Matrix Spike Are MS/MSDs a Are all MS/MSD No action is tak may use the M qualification of the	x Spike Duplicate (Me/Matrix Spike Duplicate) Matrix Spike Duplicate Matrix	S/MSD) ate recovery form present? If frequency for each matrix? In acceptance criteria? Alone. However, using informed conjunction with other QC of	d professional judgment the data reviewer riteria and determine the need for some	Yes	No .	NA .
Ms. 1.3.2.3.3.3	Is a Matrix Spike Are MS/MSDs a Are all MS/MSD No action is tak may use the M qualification of the Were outlying %	x Spike Duplicate (Me/Matrix Spike Duplicate analyzed at the required 9 %Rs and RPDs within en on MS/MSD data as and MSD results in the data.	S/MSD) ate recovery form present? If frequency for each matrix? In acceptance criteria? Islone. However, using informed conjunction with other QC contacts and correctly with an asterisk?	d professional judgment the data reviewer riteria and determine the need for some	Yes Y Y Y Y Y Y Y Y Y	No .	NA
7.6 ote: Ma 8.1 8.2 8.3	Is a Matrix Spike Are MS/MSDs a Are all MS/MSD No action is tak may use the M qualification of the Were outlying %	x Spike Duplicate (Me/Matrix Spike Duplicate) Matrix Spike Duplicate Matrix	S/MSD) ate recovery form present? If frequency for each matrix? In acceptance criteria? Islone. However, using informed conjunction with other QC contacts and correctly with an asterisk?	d professional judgment the data reviewer riteria and determine the need for some	Yes	No No	NA .

Fax Sheet

849 International Drive Suite 320 Linthicum, MD 21090

Telephone - (410) 859-5049 Fax - (410) 859-5202

TO: Ken Kuzior

COMPANY: STL-Quanterra

FAX NUMBER: 530-497-0772

FROM: Jason Si

DATE:

2/15/00

SUBJECT:

Questions for

'nject

NO OF PAGES:

5

REFERENCE NO:

37630-003

MESSAGE:

Ken: Please check the following question

1) In sample DISCH-1, MWO8D (LI5229) and MW37D (LI5219)
There is one TIC in each sample (had same mass spectra)
However, this TIC was identified as difficient compound
in each sample (see attached)

This TIC was identified as octop octamethyl cyclotetrasiloxane. (See attached example-MWOSS).

2) In each 809 - contain on VHBLK sample. Is this

This message is intended only for the use of the individual or entity to which it is addressed, and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of the message is not the intended recipient, or the employee or agent responsible for delivering the message, you are hereby notified that any dissemination, distribution or copying of the communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and return the original message to us at the above address via the U.S. Postal Service.